Are you familiar with this series?

Calculus Level 3

1 1 4 + 1 9 1 16 + = ? \large 1 - \dfrac{1}{4} + \dfrac{1}{9} - \dfrac{1}{16} + \cdots = \, ?

None of these π 2 6 \dfrac{\pi^2}{6} π 2 8 \dfrac{\pi^2}{8} π 2 4 \dfrac{\pi^2}{4} ln 2 \ln 2 π 2 12 \dfrac{\pi^2}{12} π 2 24 \dfrac{\pi^2}{24}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Akshat Sharda
Sep 29, 2015

1 1 4 + 1 9 1 16 + 1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \ldots \infty

1 + 1 4 + 1 9 + 2 ( 1 4 + 1 16 + 1 36 + ) 1+\frac{1}{4}+\frac{1}{9}+\ldots \infty -2\left(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\ldots \infty \right)

1 + 1 4 + 1 9 + 1 2 ( 1 + 1 4 + 1 9 + ) 1+\frac{1}{4}+\frac{1}{9}+\ldots \infty-\frac{1}{2}\left(1+\frac{1}{4}+\frac{1}{9}+\ldots \infty \right)

We know ,

1 + 1 4 + 1 9 + = π 2 6 1+\frac{1}{4}+\frac{1}{9}+\ldots \infty=\frac{\pi^{2}}{6}

For proofs see here .

π 2 6 1 2 π 2 6 = π 2 6 π 2 12 = π 2 12 \frac{\pi^{2}}{6}-\frac{1}{2}\cdot \frac{\pi^{2}}{6}=\frac{\pi^{2}}{6}-\frac{\pi^{2}}{12}=\boxed{\frac{\pi^{2}}{12}}

Tom Kovar
Mar 5, 2017

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...