Are you game for gamma?

I f ( 1 + x ) n = C 0 + C 1 x + C 2 x 2 + C 3 x 3 + . . . + C n x n , t h e n t h e v a l u e o f C 0 n C 1 n + 1 + C 2 n + 2 . . . . . + ( 1 ) n C n 2 n = Γ ( x ) Γ ( y ) Γ ( z ) . F i n d ( z x y ) 2 n 2 If\quad { (1+x) }^{ n }={ C }_{ 0 }+{ C }_{ 1 }{ x }+{ C }_{ 2 }{ x }^{ 2 }+{ C }_{ 3 }{ x }^{ 3 }+...+{ C }_{ n }{ x }^{ n },\quad then\quad the\quad value\quad of\quad \\ \frac { { C }_{ 0 } }{ n } -\frac { { C }_{ 1 } }{ n+1 } +\frac { { C }_{ 2 } }{ n+2 } -.....+{ (-1) }^{ n }\frac { { C }_{ n } }{ 2n } =\frac { \Gamma (x)\Gamma (y) }{ \Gamma (z) } .\\ Find\quad (z-x-y)2{n}^{2}


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vishnu C
Mar 20, 2015

Just for the record, I find the fact that for functions like the gamma function, Γ ( n ) = ( n 1 ) ! \Gamma(n)=(n-1)! quite annoying. This problem is quite straight forward - multiply ( 1 + x ) n b y x n {(1+x)}^{n} \quad by \quad {x}^{n} ; then the integration should be pretty easy. You should get ( n 1 ) ! ( n ) ! ( 2 n ) ! = B ( n , n + 1 ) . z = 2 n + 1 ; x = n o r n + 1 a n d y = n + 1 o r n r e s p e c t i v e l y . z x y = 0 \frac { (n-1)!(n)! }{ (2n)! } =B(n,n+1).\\ \therefore z=2n+1;\quad x=n\quad or\quad n+1\quad and\quad y=n+1\quad or\quad n\quad respectively.\\ \Rightarrow \quad z-x-y=\boxed { 0 } .

Yes B ( m , n ) T ( m + n ) = T ( m ) T ( n ) B(m,n)T(m+n)=T(m)T(n) .Holds if one guesses to be a direct form of the beta function(that's quite apparent though)its easy that z = x + y z=x+y

Spandan Senapati - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...