Are you good at manipulating?

Algebra Level 4

Let p p , q q and r r be the zeros of the polynomial x 3 + 5 x 2 4 x + 3 { x }^{ 3 }+5{ x }^{ 2 }-4x+3 .

Find the value of p 2 q + p 2 r + q 2 p + r 2 p + q 2 r + r 2 q { p }^{ 2 }q+{ p }^{ 2 }r+{ q }^{ 2 }p+r^{ 2 }p+{ q }^{ 2 }r+r^{ 2 }q .


The answer is 29.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Through Vieta you can see that .
p + q + r = 5 p q + q r + r p = 4 p q r = 3 T h e e x p . = p q ( p + q ) + q r ( q + r ) + r p ( r + p ) T h e e x p . = p q ( 5 r ) + q r ( 5 p ) + r p ( 5 q ) T h e e x p . = 5 ( p q + q r + r p ) 3 p q r i m p l i e s T h e e x p . = 5 ( 4 ) 3 ( 3 ) = 29 p+q+r=-5\\pq+qr+rp= -4\\pqr=-3\\The~exp.=pq(p+q)+qr(q+r)+rp(r+p)\\\implies~The~exp.=pq(-5-r)+qr(-5-p)+rp(-5-q)\\\implies~The~exp.=-5(pq+qr+rp)-3pqr\\implies~The~exp.=-5*(-4) -3*(-3) = \boxed{29}

Good work, I was going to upload the same solution but you won me.

Alan Enrique Ontiveros Salazar - 6 years, 5 months ago

Log in to reply

Thank you.

Niranjan Khanderia - 6 years, 5 months ago

did the same! overrated!

Kartik Sharma - 6 years, 5 months ago

same approach but got pretty big equations

prajwal kavad - 6 years, 5 months ago
Chew-Seong Cheong
Dec 21, 2014

p 2 q + p 2 r + q 2 p + r 2 p + q 2 r + r 2 q = p q ( p + q ) + q r ( q + r ) + r p ( r + p ) p^2q+p^2r+q^2p+r^2p+q^2r+r^2q = pq(p+q)+qr(q+r)+rp(r+p)

= p q ( p + q + r ) p q r + q r ( p + q + r ) p q r + r p ( p + q + r ) p q r \quad = pq(p+q+r) - pqr + qr(p+q+r) - pqr +rp(p+q+r) - pqr

= ( p + q + r ) ( p q + q r + r p ) 3 p q r \quad = (p+q+r)(pq+qr+rp) - 3pqr

Using Vieta's Formulas, we have: p + q + r = 5 p+q+r = -5 , p q + q r + r p = 4 pq+qr+rp=-4 and p q r = 3 pqr = -3 .

Therefore,

p 2 q + p 2 r + q 2 p + r 2 p + q 2 r + r 2 q = ( p + q + r ) ( p q + q r + r p ) 3 p q r p^2q+p^2r+q^2p+r^2p+q^2r+r^2q = (p+q+r)(pq+qr+rp) - 3pqr

= ( 5 ) ( 4 ) 3 ( 3 ) = 20 + 9 = 29 \quad = (-5)(-4) -3 (-3) = 20 + 9 = \boxed{29}

Julian Poon
Dec 18, 2014

Through Vieta you can see that

q + p + r = 5 q r + p q + p r = 4 p q r = 3 q+p+r=-5\\ qr+pq+pr=-4\\ pqr=-3

Now, through newton sums,

p 3 + q 3 + r 3 = 194 { p }^{ 3}+{ q }^{ 3 }+{ r }^{ 3 }=-194

You will see why it is necessary. Let the equation that is needed to be evaluate for this question be Q Q

Now,

( q + p + r ) 3 = ( p 3 + q 3 + r 3 ) + 3 ( Q ) + 6 ( p q r ) { \left( q+p+r \right) }^{ 3 }=\left( { p }^{ 3 }+{ q }^{ 3 }+{ r }^{ 3 } \right) +3\left( Q \right) +6\left( pqr \right)

So,

Q = ( q + p + r ) 3 6 ( p q r ) ( p 2 + q 2 + r 2 ) 3 Q=\frac { { \left( q+p+r \right) }^{ 3 }-6\left( pqr \right) -\left( { p }^{ 2 }+{ q }^{ 2 }+{ r }^{ 2 } \right) }{ 3 }

Substituting the values above, we get:

Q = 125 + 18 + 194 3 = 29 Q=\frac { -125+18+194 }{ 3 } =\boxed{29}

I came across this problem when trying to solve another problem.

We're to find p 2 ( 5 p ) + q 2 ( 5 q ) + r 2 ( 5 r ) = ( ( S 3 + 5 S 2 ) p^2(-5-p)+q^2(-5-q)+r^2(-5-r)=(-(S_3+5S_2) ; whence we can directly apply Newton's Sums at S 3 S_3 , getting S 3 + 5 S 2 4 S 1 + 9 = 0 S_3+5S_2-4S_1+9=0 , and our answer is 29 \boxed{29} .

Satvik Golechha - 6 years, 5 months ago

Log in to reply

Oh..... I did not catch that one

Julian Poon - 6 years, 5 months ago

I too did the same manipulation SG

Shubhendra Singh - 6 years, 5 months ago
Joel Tan
Dec 27, 2014

Let the polynomial be P ( x ) P (x) .

Adding 2 p q r = 6 2pqr=-6 , the expression becomes ( p + q ) ( q + r ) ( r + p ) = ( 5 p ) ( 5 q ) ( 5 r ) = P ( 5 ) = 23 (p+q)(q+r)(r+p)=(-5-p)(-5-q)(-5-r)=P (-5)=23 hence the answer is 23 ( 6 ) = 29 23-(-6)=29 .

Oops, I just brute forced the solution:

{ p , q , r } = x /. Solve [ x 3 + 5 x 2 4 x + 3 = 0 ] \{p,q,r\}=x\text{/.}\, \text{Solve}\left[x^3+5 x^2-4 x+3=0\right]

{ 1 3 ( 37 2 511 3 6501 3 1 2 ( 511 3 6501 ) 3 5 ) , 1 6 ( 1 + i 3 ) 1 2 ( 511 3 6501 ) 3 5 3 + 37 ( 1 i 3 ) 3 2 2 / 3 511 3 6501 3 , 1 6 ( 1 i 3 ) 1 2 ( 511 3 6501 ) 3 5 3 + 37 ( 1 + i 3 ) 3 2 2 / 3 511 3 6501 3 } \left\{\frac{1}{3} \left(-37 \sqrt[3]{\frac{2}{511-3 \sqrt{6501}}}-\sqrt[3]{\frac{1}{2} \left(511-3 \sqrt{6501}\right)}-5\right),\\ \frac{1}{6} \left(1+i \sqrt{3}\right) \sqrt[3]{\frac{1}{2} \left(511-3 \sqrt{6501}\right)}-\frac{5}{3}+\frac{37 \left(1-i \sqrt{3}\right)}{3\ 2^{2/3} \sqrt[3]{511-3 \sqrt{6501}}},\\ \frac{1}{6} \left(1-i \sqrt{3}\right) \sqrt[3]{\frac{1}{2} \left(511-3 \sqrt{6501}\right)}-\frac{5}{3}+\frac{37 \left(1+i \sqrt{3}\right)}{3\ 2^{2/3} \sqrt[3]{511-3 \sqrt{6501}}}\right\}

FullSimplify [ p 2 q + p 2 r + p q 2 + p r 2 + q 2 r + q r 2 ] \text{FullSimplify}\left[p^2 q+p^2 r+p q^2+p r^2+q^2 r+q r^2\right]

29 29

Paola Ramírez
Jan 10, 2015

Using Vieta's Formulas p + q + r = 5 p+q+r=-5 p q + p r + q r = 4 pq+pr+qr=-4 p q r = 3 -pqr=3

Then ( p + q + r ) ( p q + p r + q r ) = 5 × 4 (p+q+r)(pq+pr+qr)=-5\times-4 p 2 q + p 2 r + q 2 p + r 2 p + q 2 r + r 2 q + 3 p q r = 20 { p }^{ 2 }q+{ p }^{ 2 }r+{ q }^{ 2 }p+r^{ 2 }p+{ q }^{ 2 }r+r^{ 2 }q+3pqr=20 p 2 q + p 2 r + q 2 p + r 2 p + q 2 r + r 2 q + 3 p q r 3 p q r = 20 + 9 { p }^{ 2 }q+{ p }^{ 2 }r+{ q }^{ 2 }p+r^{ 2 }p+{ q }^{ 2 }r+r^{ 2 }q+3pqr-3pqr=20+9 p 2 q + p 2 r + q 2 p + r 2 p + q 2 r + r 2 q = 29 \boxed{{ p }^{ 2 }q+{ p }^{ 2 }r+{ q }^{ 2 }p+r^{ 2 }p+{ q }^{ 2 }r+r^{ 2 }q=29}

The expression is actually equal to ( p + q + r ) ( p q + p r + q r ) 3 p q r (p+q+r)(pq+pr+qr) - 3pqr and by Vieta, p + q + r = 5 p q + p r + q r = 4 p q r = 3 p+q+r= -5\\pq+pr+qr = -4\\pqr = -3 substituting will give us 5 × 4 + ( 3 × 3 ) = 20 + 9 = 29 -5 \times -4 + (- 3 \times -3) = 20 + 9 = 29

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...