Are you good at radicals?

Algebra Level 3

23 + 140 + 308 + 220 \sqrt{23+\sqrt{140}+\sqrt{308}+\sqrt{220}} can be written as a + b + c \sqrt{a}+\sqrt{b}+\sqrt{c} . What is the value of a + b + c a+b+c ?


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

23 + 140 + 308 + 220 = a + b + c = ( a + b + c ) 2 \sqrt{23+\sqrt{140}+\sqrt{308}+\sqrt{220}} = \sqrt{a}+\sqrt{b}+\sqrt{c} = \sqrt {( \sqrt{a}+\sqrt{b}+\sqrt{c})^2}

= a + b + c + 2 ( a b + b c + c a ) = 23 + 2 ( 35 + 77 + 55 ) =\sqrt{a+b+c+2(\sqrt{ab}+\sqrt{bc}+\sqrt{ca})} = \sqrt{\boxed{23}+2(\sqrt{35}+\sqrt{77}+\sqrt{55}})

= 5 + 7 + 11 + 2 ( 5 ˙ 7 + 7 ˙ 11 + 11 ˙ 5 ) = \sqrt{5+7+11+2(\sqrt{5\dot{}7}+\sqrt{7\dot{}11}+\sqrt{11\dot{}5}})

a + b + c = 23 \Rightarrow a+b+c = \boxed{23}

but how 2[{(35)^1/2)}+{(77)^1/2}+{(55)^1/2)}]= [{(ab)^1/2)}+{(bc)^1/2}+{(ca)^1/2)}]

Gaurav Purswani - 6 years, 4 months ago

Log in to reply

140 + 308 + 220 = 2 35 + 2 77 + 2 55 \sqrt{140}+\sqrt{308}+\sqrt{220} = 2\sqrt{35}+2\sqrt{77}+2\sqrt{55}

= 2 ( 5 ˙ 7 + 7 ˙ 11 + 11 ˙ 5 ) = 2(\sqrt{5\dot{}7}+\sqrt{7\dot{}11}+\sqrt{11\dot{}5})

a , b . c = 5 , 7 , 11 \Rightarrow a,b.c = 5,7,11

Chew-Seong Cheong - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...