Are you making its root?

Algebra Level 4

a 6 1 a 1 + b 6 1 b 1 + c 6 1 c 1 \frac{a^6-1}{a-1}+\frac{b^6-1}{b-1}+\frac{c^6-1}{c-1}

Let a a , b b and c c be the roots of the equation x 3 + 3 x 7 = 0 x^3+3x-7=0 . Find the value of the expression above.


The answer is -69.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 24, 2016

a , b , c a 6 1 a 1 = a , b , c ( a 3 1 ) ( a 3 + 1 ) a 1 = a , b , c ( a 1 ) ( a 2 + a + 1 ) ( a 3 + 1 ) a 1 Note 1 = a , b , c ( a 2 + a + 1 ) ( 8 3 a ) = a , b , c ( 5 a 2 + 5 a + 8 3 a 3 ) = a , b , c ( 5 a 2 + 5 a + 8 3 7 3 a ) = a , b , c ( 5 a 2 + 14 a 13 ) = 5 ( a 2 + b 2 + c 2 ) + 14 ( a + b + c ) 3 ( 13 ) Note 2 = 5 ( 0 2 2 ( 3 ) ) + 14 ( 0 ) 39 = 69 \begin{aligned} \sum_{a, \ b, \ c} \frac {a^6-1}{a-1} & = \sum_{a, \ b, \ c} \frac {(a^3-1)(a^3+1)}{a-1} \\ & = \sum_{a, \ b, \ c} \frac {(a-1)(a^2+a+1)(\color{#3D99F6}{a^3+1})}{a-1} & \small \color{#3D99F6}{\text{Note 1}} \\ & = \sum_{a, \ b, \ c} (a^2+a+1)(\color{#3D99F6}{8-3a}) \\ & = \sum_{a, \ b, \ c} (5a^2+5a+8 - 3\color{#3D99F6}{a^3}) \\ & = \sum_{a, \ b, \ c} (5a^2+5a+8 - 3\color{#3D99F6}{7-3a}) \\ & = \sum_{a, \ b, \ c} (5a^2+14a-13) \\ & = 5(\color{#3D99F6}{a^2+b^2+c^2})+14(\color{#D61F06}{a+b+c})-3(13) & \small \color{#3D99F6}{\text{Note 2}} \\ & = 5(\color{#3D99F6}{0^2-2(3)})+14(\color{#D61F06}{0})-39 \\ & = \boxed{-69} \end{aligned}


Notes:

  1. Since a a is a root of x 3 + 3 x 7 x^3+3x-7 , then we have a 3 + 3 a 7 = 0 a^3+3a-7=0 , a 3 = 7 3 a \implies a^3 = 7-3a ; the same for b b and c c .
  2. By Vieta's formula , we have a + b + c = 0 \color{#D61F06}{a+b+c = 0} and a b + b c + c a = 3 ab+bc+ca = 3 . Using the identity a 2 + b 2 + c 2 = ( a + b + c ) 2 2 ( a b b c + c a ) \color{#3D99F6}{a^2+b^2+c^2 = (a+b+c)^2 - 2(ab_bc+ca)} = 0 2 2 ( 3 ) = 6 \color{#3D99F6}{= 0^2 - 2(3) = -6} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...