Are you ready?

Geometry Level 4

n = 1 15 sin ( n π 31 ) = α 2 β \large \prod _{ n=1 }^{ 15 }{ \sin { \left( \frac { n\pi }{ 31 } \right) } } =\frac { \sqrt { \alpha } }{ { 2 }^{ \beta } }

If the above equation holds true for coprime positive integers α \alpha and β \beta , find α + β \alpha +\beta .


This problem was created in celebration of the Rio 2016 Summer Olympics (Games of the XXXI Olympiad).
Image Credit: Olympic.org .


The answer is 46.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 10, 2016

The following formula (T. Drane, pers. comm., Apr. 19, 2006) [ Eqn. 24 ] states that:

n = 1 m 1 sin ( n π m ) = m 2 m 1 \prod_{n=1}^{m-1} \sin \left(\frac {n \pi}m \right) = \frac m{2^{m-1}}

n = 1 30 sin ( n π 31 ) = 31 2 30 n = 1 15 sin ( n π 31 ) n = 16 30 sin ( n π 31 ) = 31 2 30 n = 1 15 sin ( n π 31 ) n = 16 30 sin ( π n π 31 ) = 31 2 30 n = 1 15 sin ( n π 31 ) n = 16 30 sin ( ( 31 n ) π 31 ) = 31 2 30 n = 1 15 sin ( n π 31 ) n = 1 15 sin ( n π 31 ) = 31 2 30 ( n = 1 15 sin ( n π 31 ) ) 2 = 31 2 30 n = 1 15 sin ( n π 31 ) = 31 2 15 \begin{aligned} \implies \prod_{n=1}^{30} \sin \left(\frac {n \pi}{31} \right) & = \frac {31}{2^{30}} \\ \prod_{n=1}^{\color{#D61F06}{15}} \sin \left(\frac {n \pi}{31} \right) \prod_{n=\color{#D61F06}{16}}^{30} \sin \left(\frac {n \pi}{31} \right) & = \frac {31}{2^{30}} \\ \prod_{n=1}^{\color{#D61F06}{15}} \sin \left(\frac {n \pi}{31} \right) \prod_{n=\color{#D61F06}{16}}^{30} \sin \left(\color{#D61F06}{\pi} - \frac {n \pi}{31} \right) & = \frac {31}{2^{30}} \\ \prod_{n=1}^{\color{#D61F06}{15}} \sin \left(\frac {n \pi}{31} \right) \prod_{n=\color{#D61F06}{16}}^{30} \sin \left(\frac {\color{#D61F06}{(31-n)}\pi}{31} \right) & = \frac {31}{2^{30}} \\ \prod_{n=1}^{\color{#D61F06}{15}} \sin \left(\frac {n \pi}{31} \right) \prod_{n=\color{#D61F06}{1}}^{\color{#D61F06}{15}} \sin \left(\frac {\color{#D61F06}{n} \pi}{31} \right) & = \frac {31}{2^{30}} \\ \left( \prod_{n=1}^{15} \sin \left(\frac {n \pi}{31} \right) \right)^2 & = \frac {31}{2^{30}} \\ \implies \prod_{n=1}^{15} \sin \left(\frac {n \pi}{31} \right) & = \frac {\sqrt{31}}{2^{15}} \end{aligned}

α + β = 31 + 15 = 46 \implies \alpha + \beta = 31 + 15 = \boxed{46}

Bonus:-

Prove n = 1 m 1 sin ( n π m ) = m 2 m 1 \large\prod_{n=1}^{m-1} \sin \left(\frac {n \pi}m \right) = \frac m{2^{m-1}}

Rishabh Jain - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...