Are you Smart in Simple Algebra?

Algebra Level 4

If x 2 x 1 = 0 x^2 - x - 1 = 0 , then find the value of the expression below

x 16 1 x 8 + 2 x 7 = ? \large{\frac{x^{16} - 1}{x^8 + 2x^7} = ?}


The answer is 21.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Rohit Ner
Jul 13, 2015

x 2 x 1 = 0 x 2 = x + 1 x = 1 + 1 x . . . ( 1 ) x + 1 x = 1 + 2 x x 16 1 x 8 + 2 x 7 = x 8 1 x 8 1 + 2 x = x 8 1 x 8 x + 1 x = ( x 4 + 1 x 4 ) ( x 2 + 1 x 2 ) ( x 1 x ) \begin{aligned} x^2 - x - 1 &= 0\\x^2 &=x+1\\x &=1+\frac{1}{x}...(1)\\x+\frac{1}{x}&=1+\frac{2}{x}\\\frac{x^{16} - 1}{x^8 + 2x^7} &=\frac{x^{8} - \frac{1}{x^8}}{1 + \frac{2}{x}}\\ &=\frac{x^{8} - \frac{1}{x^8}}{x+\frac{1}{x}}\\ &= \color{#D61F06}{\left( x^{4} +\frac{1}{x^4} \right)}\color{#3D99F6}{\left( x^{2} +\frac{1}{x^2} \right)}\color{#20A900}{\left( x -\frac{1}{x} \right)} \end{aligned}
From ( 1 ) (1)

x 1 x = 1 x 2 + 1 x 2 2 = 1 x 2 + 1 x 2 = 3 x 4 + 1 x 4 = 7 \begin{aligned} x-\frac{1}{x} &=\color{#20A900}{1}\\x^2+\frac{1}{x^2}-2 &=1\\x^2+\frac{1}{x^2} &=\color{#3D99F6}{3}\\x^4+\frac{1}{x^4} &=\color{#D61F06}{7}\end{aligned}

Substituting the values thus obtained,

x 16 1 x 8 + 2 x 7 = 7. 3. 1 = 21 \begin{aligned}\frac{x^{16} - 1}{x^8 + 2x^7} &=\color{#D61F06}{7}.\color{#3D99F6}{3}.\color{#20A900}{1}\\ &\Huge\color{#3D99F6}{=\boxed{21}} \end{aligned}

Moderator note:

This is a solution that I consider "solve by magical observation". It doesn't offer us any good insight into why the statement is true, or how to deal with a similar problem like this in future.

Outstanding :)

Motasem Mamdoh - 5 years, 11 months ago

Log in to reply

Thank you :)

Rohit Ner - 5 years, 11 months ago

Astonishing!!i can also be clever!same approach

Aakash Khandelwal - 5 years, 11 months ago

Log in to reply

Hehe! Cheers!

Rohit Ner - 5 years, 11 months ago

Log in to reply

Cheers!!!!

Aakash Khandelwal - 5 years, 11 months ago

This was one good solution!!

Jayesh Swami - 5 years, 6 months ago
Satyajit Mohanty
Jul 13, 2015

How did u get x^4+1=3x^2 and x^8+1=7x^4

Ashish Sacheti - 5 years, 11 months ago

Log in to reply

x'2-1=x...>square it on both sides to get x'4+1=3 x'2

neeru g - 5 years, 10 months ago

Nice and simple way..

Sanjeet Raria - 5 years, 10 months ago

I did the same!! Look at my solution!

Akshat Sharda - 5 years, 8 months ago
Ravi Dwivedi
Jul 13, 2015

Suppose α \alpha is a root of x 2 x 1 = 0 x^2-x-1=0 Then α 2 = α + 1 \alpha^2=\alpha+1 α 4 = ( α + 1 ) 2 = α 2 + 2 α + 1 = ( α + 1 ) + 2 α + 1 = 3 α + 2 \alpha^4=(\alpha+1)^2=\alpha^2+2\alpha+1=(\alpha+1)+2\alpha+1=3\alpha+2\\ α 8 = ( α 4 ) 2 = ( 3 α + 2 ) 2 = 9 α 2 + 12 α + 4 = 9 ( α + 1 ) + 12 α + 4 = 21 α + 13 \alpha^8=(\alpha^4)^2=(3\alpha+2)^2=9\alpha^2+12\alpha+4=9(\alpha+1)+12\alpha+4=21\alpha+13\\ α 16 = ( 21 α + 13 ) 2 = 441 α 2 + 169 + 546 α = 441 ( α + 1 ) + 546 α + 169 = 987 α + 610 \alpha^{16}=(21\alpha+13)^2=441\alpha^2+169+546\alpha=441(\alpha+1)+546\alpha+169=987\alpha+610\\ α 7 = α α 2 α 4 = α ( α + 1 ) ( 3 α + 2 ) = 13 α + 8 \alpha^7=\alpha \cdot \alpha^2 \cdot \alpha^4=\alpha(\alpha+1)(3\alpha+2)=13\alpha+8\\

Putting in given expression we get the desired expression equals

987 α + 609 α 7 ( α + 2 ) = 987 α + 609 ( 13 α + 8 ) ( α + 2 ) = 987 α + 609 ( 13 α 2 + 34 α + 16 ) = 987 α + 609 47 α + 29 \frac{987\alpha+609}{\alpha^7(\alpha+2)}=\frac{987\alpha+609}{(13\alpha +8)(\alpha+2)}=\frac{987\alpha+609}{(13\alpha^2+34\alpha+16)}=\frac{987\alpha+609}{47\alpha+29}\\ = 21 ( 47 α + 29 ) 47 α + 29 = 21 =\frac{21(47\alpha+29)}{47\alpha+29}=\boxed{21}

NOTE: A shortcut method We observe that α k = F k α + F k 1 \alpha^k=F_{k} \cdot \alpha + F_{k-1} where k k is natural number and F k F_k is k k th Fibonacci number

So the higher powers of α \alpha can be obtained easily by this procedure than the above procedure and then put into the expression.

Moderator note:

The reason for the relationship to Fibonacci numbers is that the characteristic equation of F n F _n is x 2 x 1 = 0 x^2 - x - 1 = 0 . This also offers us a way to deal with the generalized problem.

Well, without using Mathematical Induction, can you prove that α k = F k α + F k 1 ? \alpha^k = F_k\alpha + F_{k-1} ?

Satyajit Mohanty - 5 years, 11 months ago
Akshat Sharda
Sep 4, 2015

x 16 1 x 8 + 2 x 7 \Rightarrow \frac{x^{16} - 1} {x^8 + 2x^7}

( x 8 + 1 ) ( x 4 + 1 ) ( x 2 + 1 ) ( x + 1 ) ( x 1 ) x 7 ( x + 2 ) . . . . . ( A ) \Rightarrow \frac{(x^{8}+1)(x^{4}+1)(x^{2}+1)(x+1)(x-1)}{x^{7}(x+2)}.....(A)

Now , we are given ,

x 2 x 1 = 0 \Rightarrow x^{2}-x-1=0

We will make some observations ,

x 2 1 = x \Rightarrow x^{2}-1=x

( x + 1 ) ( x 1 ) = x \Rightarrow (x+1)(x-1)=x ..... ( 1 ) (1)

Also ,

x 2 1 = x \Rightarrow x^{2}-1=x

Squaring it ,

( x 2 1 ) 2 = x 2 \Rightarrow (x^{2}-1)^{2}=x^{2}

( x 4 + 1 ) = 3 x 2 \Rightarrow (x^{4}+1)=3x^{2} ..... ( 2 ) (2)

Also ,

( x 4 + 1 ) 2 = ( 3 x 2 ) 2 \Rightarrow (x^{4}+1)^{2}=(3x^{2})^{2}

( x 8 + 1 ) = 7 x 4 \Rightarrow (x^{8}+1)=7x^{4} ..... ( 3 ) (3)

Substituting ( 1 ) , ( 2 ) (1),(2) and ( 3 ) (3) in ( A ) (A) ,

7 x 4 × 3 x 2 × ( x 2 + 1 ) × x x 7 ( x + 2 ) \Rightarrow \frac{7x^{4}×3x^{2}×(x^{2}+1)×x}{x^{7}(x+2)}

7 × 3 × ( x 2 + 1 ) ( x + 2 ) . . . . . ( B ) \Rightarrow \frac{7×3×(x^{2}+1)}{(x+2)}.....(B)

Now again an observation by the given equation ,

x 2 x 1 = 0 \Rightarrow x^{2}-x-1=0

x 2 1 = x \Rightarrow x^{2}-1=x

Adding 2 2 both sides ,

x 2 + 1 = x + 2 \Rightarrow x^{2}+1=x+2 ..... ( 4 ) (4)

Placing ( 4 ) (4) in ( B ) (B) we will get ,

7 × 3 × 1 = 21 \Rightarrow 7×3×1=\boxed{21}

This is not a solution.

Cheating! :P

Satyajit Mohanty - 5 years, 10 months ago

Log in to reply

Right.....

Aamir Faisal Ansari - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...