Are you smarter than me? 14

Geometry Level 5

If tan ( A ) . s e c ( 4 A ) + t a n ( 4 A ) = t a n ( x ) + t a n ( 4 A ) . s e c ( y ) \tan { (A) } .sec(4A)+tan(4A)=tan(x)+tan(4A).sec(y)

And A = 10000 A=10000 Find x + y x+y


The answer is 30000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mehul Chaturvedi
Dec 5, 2014

W e n e e d t o p r o v e t h a t t a n A . s e c 4 A + t a n 4 A = t a n A + t a n 4 A . s e c 2 A T h e p r o b l e m C a n b e r e w r i t t e n a s : t a n A . s e c 4 A t a n A = t a n 4 A . s e c 2 A t a n 4 A . t a n A ( s e c 4 A 1 ) = t a n 4 A ( s e c 2 A 1 ) s e c 4 A 1 s e c 2 A 1 = t a n 4 A t a n A . . . . . . E q n . 1 s e c 4 A 1 s e c 2 A 1 = 1 c o s 4 A 1 1 c o s 2 A 1 L H S = = 1 c o s 4 A c o s 4 A . c o s 2 A 1 c o s 2 A = 2 s i n 2 2 A c o s 4 A . c o s 2 A 2 s i n 2 A = 2 s i n 2 A . c o s 2 A . s i n 2 A c o s 4 A . 2 s i n 2 A = s i n 4 A . 2 s i n A c o s A c o s 4 A . 2 s i n 2 A = t a n 4 A . c o t A = t a n 4 A t a n A f r o m E q n . 1 R H S = t a n 4 A t a n A h e n c e L H S = R H S H e n c e p r o v e d H e n c e x + y = 3 A w h e r e A = 10000 t h e r e f o r e 3 A = 30000 We\quad need\quad to\quad prove\quad that\\ tanA.sec4A+tan4A=tanA+tan4A.sec2A\\ The\quad problem\quad Can\quad be\quad rewritten\quad as:\\ \quad \quad tanA.sec4A-tanA=tan4A.sec2A\\ -tan4A.tanA(sec4A-1)=tan4A(sec2A-1)\\ \Rightarrow \frac { sec4A-1 }{ sec2A-1 } =\frac { tan4A }{ tanA } ......Eqn.1\\ \frac { sec4A-1 }{ sec2A-1 } =\frac { \frac { 1 }{ cos4A } -1 }{ \frac { 1 }{ cos2A } -1 } \\ LHS=\\ =\frac { 1-cos4A }{ cos4A } .\frac { cos2A }{ 1-cos2A } \\ =\frac { 2{ sin }^{ 2 }2A }{ cos4A } .\frac { cos2A }{ { 2sin }^{ 2 }A } \\ =\frac { 2sin2A.cos2A.sin2A }{ cos4A.2{ sin }^{ 2 }A } \\ =\frac { sin4A.2sinAcosA }{ cos4A.2{ sin }^{ 2 }A } \\ =tan4A.cotA\\ =\frac { tan4A }{ tanA } \\ from\quad Eqn.\quad 1\quad RHS=\frac { tan4A }{ tanA } \\ hence\quad LHS=RHS\quad \\ Hence\quad proved\\ Hence\quad x+y=3A\\ where\quad A=10000\quad therefore\quad \\ 3A=30000

What made you assume x=A and y=2A? Is there another way of getting to the answer without knowing it in the first place? Also the 5th line has an extra term tan(4A).

Dhruva Patil - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...