Are you smarter than me?

Geometry Level 3

What is the sum of all x [ 0 , π ] x \in [0,\pi ] which satisfy this equation?

sin x + 1 2 cos x = sin 2 ( x + π 4 ) \sin{x}+\frac { 1 }{ 2 } \cos{x}={ \sin }^{ 2 }\left(x+\frac { \pi }{ 4 }\right)

π 6 \frac { \pi }{ 6 } 2 π 1 \frac { 2\pi }{ 1 } 5 π 6 \frac { 5\pi }{ 6 } π 1 \frac { \pi }{ 1 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Nov 17, 2014

sin x + 1 2 cos x = sin 2 ( x + π 4 ) = 1 2 ( 1 cos ( 2 x + π 2 ) ) = 1 2 ( 1 + sin ( 2 x ) ) 2 sin x + cos x = 1 + 2 sin x cos x 2 sin x cos x 2 sin x cos x + 1 = 0 ( 2 sin x 1 ) ( cos x 1 ) = 0 \begin{aligned} \sin x + \frac 12 \cos x & = \sin^2 \left(x + \frac \pi 4 \right) \\ & = \frac 12 \left( 1-\cos \left(2x + \frac \pi 2 \right) \right) \\ & = \frac 12 \left( 1+\sin (2x) \right) \\ 2 \sin x + \cos x & = 1 + 2\sin x \cos x \\ 2\sin x \cos x - 2 \sin x - \cos x + 1 & = 0 \\ (2 \sin x -1)(\cos x - 1) & = 0 \end{aligned}

{ sin x = 1 2 x = π 6 , 5 π 6 cos x = 1 x = 0 \implies \begin{cases} \sin x = \frac 12 & \implies x = \frac \pi 6, \ \frac {5\pi}6 \\ \cos x = 1 & \implies x = 0 \end{cases}

Therefore, the required answer is π 6 + 5 π 6 + 0 = π \frac \pi 6 + \frac {5\pi}6 + 0 = \boxed{\pi}

You use the angle addition formula for cos(2x + pi/2). But pi/2 is such a simple angle to consider you could use the identity cos(theta + pi/2) = -sin(theta) directly by considering the geometry behind the trig functions.

Richard Desper - 4 years, 6 months ago

Log in to reply

Thanks for your comments. I have changed the solution. It was one of my earlier solution.

Chew-Seong Cheong - 4 years, 6 months ago
Sandeep Rathod
Nov 17, 2014

s i n x + 1 2 c o s x = 1 2 ( 1 + 2 s i n x c o s x ) sinx + \frac{1}{2}cosx = \frac{1}{2}(1 + 2sinxcosx)

= c o s x ( 1 2 s i n x ) = 1 2 s i n x = cosx(\frac{1}{2} - sinx) = \frac{1}{2} -sinx

( 1 2 s i n x ) ( c o s x 1 ) = 0 (\frac{1}{2} - sinx)(cosx - 1) = 0

Thus ,

s i n x = 1 2 , x = π 6 , 5 π 6 sinx = \frac{1}{2} , x = \frac{\pi}{6} , \frac{5\pi}{6}

c o s x = 0 , x = 2 n π cosx = 0 , x = 2n\pi

Why Level 5 @Mehul Chaturvedi

sandeep Rathod - 6 years, 6 months ago

Log in to reply

exactly ._. i think he is generous enough to gift us 210 points :D

Aritra Jana - 6 years, 6 months ago

(cosx-1)=0 so cosx=1! why 0?

Agastya Chandrakant - 6 years, 5 months ago

You do the hard part, and then solve (cos x-1) = 0 with cos x = 0!!!! But it's OK because you then give the wrong solution for cos x=0. You give the solution for cos x = 1, which is what you really wanted.

Richard Desper - 4 years, 6 months ago
Alessandro Bellia
Oct 28, 2016

sin x + 1 2 cos x = sin 2 ( x + π 4 ) 2 sin x + cos x = 2 sin 2 ( x + π 4 ) 2 sin x + cos x = 2 sin x cos x + 1 4 sin 2 x + 4 sin x cos x + cos 2 x = 4 sin 2 x cos 2 x + 4 sin x cos x + 1 The two sides are squared 4 sin 2 x + 1 sin 2 x = 4 sin 2 x cos 2 x + 1 3 sin 2 x = 4 sin 2 x cos 2 x 3 = 4 cos 2 x cos x = ± 3 2 x = π 6 o r x = 5 6 π \sin { x } +\frac { 1 }{ 2 } \cos { x } =\sin ^{ 2 }{ \left( x+\frac { \pi }{ 4 } \right) } \\ \\ \Rightarrow 2\sin { x } +\cos { x } =2\sin ^{ 2 }{ \left( x+\frac { \pi }{ 4 } \right) } \\ \\ \Rightarrow 2\sin { x } +\cos { x } =2\sin { x } \cos { x } +1\\ \\ \Rightarrow 4\sin ^{ 2 }{ x } +4\sin { x } \cos { x } +\cos ^{ 2 }{ x } =4\sin ^{ 2 }{ x } \cos ^{ 2 }{ x } +4\sin { x } \cos { x } +1 \text { The two sides are squared} \\ \\ \Rightarrow 4\sin ^{ 2 }{ x } +1-\sin ^{ 2 }{ x } =4\sin ^{ 2 }{ x } \cos ^{ 2 }{ x } +1\\ \\ \Rightarrow 3\sin ^{ 2 }{ x } =4\sin ^{ 2 }{ x } \cos ^{ 2 }{ x } \\ \\ \Rightarrow 3=4\cos ^{ 2 }{ x } \\ \\ \Rightarrow \cos { x } =\pm \frac { \sqrt { 3 } }{ 2 } \\ \\ \Rightarrow x=\frac { \pi }{ 6 } \quad or\quad \quad x=\frac { 5 }{ 6 } \pi

At a certain point, you divide by sin^2(x) without allowing for possibility that sin x = 0. Thus you neglect the possibility of x = 0. You may have gotten lucky when asked to sum the solutions, since 0 does not contribute to the sum.

Richard Desper - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...