Are you smarter than me?

Calculus Level 4

S o l u t i o n o f t h e d i f f e r e n t i a l e q u a t i o n x 2 d y d x . c o s ( 1 x ) y s i n ( 1 x ) = 1 w h e r e y 1 a s x i s . Solution\quad of\quad the\quad differential\quad equation\quad { x }^{ 2 }\frac { dy }{ dx } .cos(\frac { 1 }{ x } )-ysin(\frac { 1 }{ x } )=-1\\ where\quad y\rightarrow -1\quad as\quad x\rightarrow \infty \quad is.

y = s i n 1 x + c o s 1 x y=sin\frac { 1 }{ x } +cos\frac { 1 }{ x } y = x + 1 x c o s ( 1 x ) y=\frac { x+1 }{ xcos(\frac { 1 }{ x } ) } y = x + 1 x s i n ( 1 x ) y=\frac { x+1 }{ xsin(\frac { 1 }{ x } ) } y = s i n 1 x c o s 1 x y=sin\frac { 1 }{ x } -cos\frac { 1 }{ x }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Siddharth Yadav
Mar 25, 2017

Rearrange to get a first order differential equation With integrating factor as 1/cos(1/x).

The options ought to be better . I just evaluated the limits for x-> infinity for the given equations and the fourth one matched .

Arghyadeep Chatterjee - 3 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...