If we have cos ( A − B ) sin ( A + B ) = 1 − 5 1 + 5 then find the value of tan ( 4 π − A ) tan ( 4 π − B ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Thanks, I have updated the answer to -5.
Even I got -5
I also got -5
easiest way is to simply put B=0 ..hence tanA=-1.5..then just expand second required expression ANS was -5
Simplifying the given equation (Sin A Cos B + Cos A Sin B)/(Cos A Cos B + Sin A Sin B) = ( Tan A + Tan B)/( 1 + Tan A Tan B) = -3/2
Hence Tan A + Tan B = (-3/2)(Tan A Tan B + 1)
Now Tan (Pi/4 - A) Tan (Pi/4 - B) = ((1 - Tan A)/(1 + Tan A) ((1 - Tan B)/(1 + Tan B))
=( 1- (Tan A + Tan B) + Tan A Tan B)/( 1 + (Tan A + Tan B) + Tan A Tan B)
= ( 1 + (3/2)( Tan A Tan B + 1) + Tan A Tan B)/( 1 - (3/2) (Tan A Tan B + 1) + Tan A Tan B)
= (5/2) ( 1 + Tan A Tan B)/ (-1/2) (1 + Tan A Tan B) = -5
Problem Loading...
Note Loading...
Set Loading...
l e t 4 π − A = P , 4 π − B = Q sin ( A + B ) = cos ( P + Q ) cos ( A − B ) = cos ( Q − P ) ⇒ 1 − 5 1 + 5 = cos ( Q − P ) cos ( Q + P ) = cos P cos Q + sin P sin Q cos P cos Q − sin P sin Q = 1 + tan P tan Q 1 − tan P tan Q = 1 + X 1 − X ⇒ X = − 5
Please,let me know is the answer is -5 or there is a mistake in my calculation.
Thanks.