A smarter way, I suppose

Algebra Level 4

x 5 209 x + 56 = 0 { x }^{ 5 }-209x+56=0

If the above equation has two roots whose product is 1 1 , find their sum.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Neel Shah
Jan 23, 2015

Let a a and b b be the two roots, then a b = 1 ab= 1 and

a 5 209 a + 56 = 0 , b 5 209 b + 56 = 0 a^5 - 209a + 56 = 0, \ \ \ \ \ \ \ \ \ b^5 - 209b + 56 = 0

Or

a 5 = 209 a 56 , b 5 = 209 b 56 a^5 = 209a - 56, \ \ \ \ \ \ \ \ \ b^5 = 209b - 56

Product of this two equation gives

( a b ) 5 = 20 9 2 ( a b ) 209 56 ( a + b ) + 5 6 2 (ab)^5 = 209^2 (ab) - 209 \cdot 56 \cdot (a + b) + 56^2

Substitution of a b = 1 ab = 1 yields a + b = 4 a + b = \boxed{4}

Chew-Seong Cheong
Dec 21, 2014

Let the two roots be α \alpha and 1 α \dfrac {1}{\alpha} , and their sum be a = α + 1 α a = \alpha +\dfrac {1}{\alpha} ; then the two factors are:

( x α ) ( x 1 α ) = x 2 ( α + 1 α ) x + 1 = x 2 a x + 1 (x-\alpha)(x-\dfrac {1}{\alpha}) = x^2 - (\alpha +\dfrac {1}{\alpha})x +1 = x^2 - ax + 1

Then, let:

x 5 209 x + 56 = ( x 2 a x + 1 ) ( x 3 + b x 2 + c x + d ) x^5 - 209x + 56 = (x^2 - ax +1)(x^3 + bx^2 + cx + d)

x 5 + ( b a ) x 4 + ( c a b + 1 ) x 3 + ( d a c + b ) x 2 + ( c a d ) x + d \quad \quad x^5 + (b-a)x^4+(c-ab+1)x^3 + (d-ac+b)x^2 + (c-ad)x + d

Equating the coefficients:

{ d = 56 b a = 0 b = a c a b + 1 = 0 c = a 2 1 c a d = 209 a 2 1 56 a = 209 a 2 56 a + 208 = 0 \Rightarrow \begin {cases} d = 56 & \\ b-a = 0 & \Rightarrow b = a \\ c-ab+1 = 0 & \Rightarrow c = a^2 -1 \\ c - ad = - 209 & \Rightarrow a^2 - 1 - 56a = - 209 \quad \Rightarrow a^2 - 56a + 208 = 0 \end {cases}

From a 2 56 a + 208 = ( a 4 ) ( a 52 ) = 0 \quad a^2 - 56a + 208 = (a-4)(a-52)=0

{ a = 4 α + 1 α = 4 α 2 4 α + 1 = 0 x = 2 ± 3 a = 52 α + 1 α = 52 α 2 52 α + 1 = 0 x = 26 ± 15 3 \Rightarrow \begin {cases} a = 4 & \Rightarrow \alpha +\frac {1}{\alpha} = 4 & \Rightarrow \alpha^2 - 4\alpha + 1 = 0 & \Rightarrow x = 2 \pm \sqrt{3} \\ a = 52 & \Rightarrow \alpha +\frac {1}{\alpha} = 52 & \Rightarrow \alpha^2 - 52\alpha + 1 = 0 & \Rightarrow x = 26 \pm 15 \sqrt{3} \end {cases}

It can be shown that x = 26 ± 15 3 x = 26 \pm 15 \sqrt{3} are not roots of the equation. Therefore the sum of the two roots a = 4 a = \boxed {4}

How can we show that a = 52 is not the answer?

Krish Shah - 1 year, 2 months ago

Log in to reply

For x = 26 ± 15 3 x=26\pm 15\sqrt 3 , x 5 209 x + 56 0 x^5-209x+56 \boxed{\red \ne} 0 .

Chew-Seong Cheong - 1 year, 2 months ago

Therefore, a = 52 is an extraneous solution.

Krish Shah - 1 year, 2 months ago

Log in to reply

Yes, it is an extraneous solution.

Chew-Seong Cheong - 1 year, 2 months ago
Shandy Rianto
Dec 29, 2014

Let the five roots of the equation are a , b , c , d a,b,c,d and e e .

Let the two roots whose product is 1 1 are a a and b b , a b = 1 a \cdot b = 1 .

By Vieta's Formula , we have

  1. a b c d e = 56 abcde = -56 Since a b = 1 ab =1 then c d e = 56 cde = -56

  2. a + b + c + d + e = 0 c + d + e = ( a + b ) a+b+c+d+e = 0 \rightarrow c+d+e = -(a+b)

  3. a b + a c + a d + a e + b c + b d + b e + c d + c e + d f = 0 ab+ac+ad+ae+bc+bd+be+cd+ce+df = 0 1 + ( a + b ) c + ( a + b ) d + ( a + b ) e + c d + c e + d e = 0 1+(a+b)c+(a+b)d+(a+b)e+cd+ce+de = 0 1 + ( a + b ) ( c + d + e ) + ( c d + c e + d e ) = 0 1+(a+b)(c+d+e)+(cd+ce+de) = 0 Since c + d + e = ( a + b ) c+d+e=-(a+b) so 1 ( a + b ) 2 + ( c d + c e + d e ) = 0 1-(a+b)^2+(cd+ce+de) = 0 c d + c e + d e = ( a + b ) 2 1 cd+ce+de=(a+b)^2 - 1

  4. a b c d + a b c e + a b d e + a c d e + b c d e = 209 abcd+abce+abde+acde+bcde = -209 ( a b ) ( c d + c e + d e ) + ( a + b ) ( c d e ) = 209 (ab)(cd+ce+de)+(a+b)(cde) = -209

Since c d + c e + d e = ( a + b ) 2 1 cd+ce+de=(a+b)^2 - 1 and c d e = 56 cde = -56 and a b = 1 ab=1 so

( a + b ) 2 1 56 ( a + b ) + 209 = 0 (a+b)^2 - 1 - 56(a+b) + 209 = 0

( a + b ) 2 56 ( a + b ) + 208 = 0 (a+b)^2 - 56(a+b) + 208 = 0

Solve ( a + b ) 2 56 ( a + b ) + 208 = 0 (a+b)^2 - 56(a+b) + 208 = 0 we have

( ( a + b ) 4 ) ( ( a + b ) 52 ) = 0 ((a+b)-4)((a+b)-52) = 0 a + b = 4 a+b = 4 or a + b = 52 a+b = 52 Hence a + b = 4 a+b = \boxed{4}

Yes, your way is simpler. I have rewritten it perhaps for easier reading.

After visiting the problem again, there is indeed a simpler way to solve this. Thanks to Shandy Rianto .

Like Shandy did, let the five roots be a a , b b , c c , d d and e e and let a b = 1 ab=1 and a + b = s a+b=s , the sum that we need to find.

Then, using Vieta formulas, we get:

S 1 = a + b + c + d + e = s + c + d + e = 0 c + d + e = s S_1= a+b+c+d+e = s+c+d+e = 0\quad \Rightarrow c+d+e = -s

S 2 = a b + a c + a d + a e + b c + b d + b e + c d + c e + d e = 0 S_2 = ab+ac+ad+ae+bc+bd+be+cd+ce+de = 0

1 + ( a + b ) ( c + d + e ) + c d + c e + d e = 1 s 2 + c d + c e + d e = 0 \Rightarrow 1+(a+b)(c+d+e)+cd+ce+de = 1-s^2+cd+ce+de = 0

c d + c e + d e = s 2 1 \Rightarrow cd+ce+de = s^2 -1

S 4 = a b c d + a b c e + a b d e + a c d e + b c d e = 209 S_4 = abcd+abce+abde+acde+bcde = -209

c d + c e + d e + ( a + b ) c d e = s 2 1 + ( c d e ) s = 209 \Rightarrow cd+ce+de+(a+b)cde = s^2-1+(cde)s = -209

S 5 = a b c d e = c d e = 56 s 2 1 + ( c d e ) s = s 2 1 56 s = 209 S_5 = abcde = cde = -56\quad \Rightarrow s^2-1+(cde)s = s^2-1-56s = -209

s 2 56 s + 208 = 0 ( s 4 ) ( s 52 ) = 0 \Rightarrow s^2-56s + 208 = 0\quad \Rightarrow (s-4)(s-52)=0

s = 4 \Rightarrow s = 4 or s = 52 s = 52 and the answer is s = 4 s=\boxed{4} .

As to why s = 52 s=52 is rejected as asked by Harimanjunathan Sankaranarayanan , I can only plot out the actual curve of the equation and say that there are only three real roots, a a and b b are the two within 0 < x < 4 0<x<4 .

actual curve actual curve

Chew-Seong Cheong - 6 years, 5 months ago

The actual answer is just 4. Was wondering if your solution has a continuation in which 52 is rejected.

Harimanjunathan Sankaranarayanan - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...