Are you smarter than me? 53

Algebra Level 4

Find the sum integer values of x , y x,y

3 x 2 + 3 y 2 + 4 x y 10 x 10 y + 10 = 0 3x^2+3y^2+4xy-10x-10y+10=0


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sandeep Rathod
Jan 28, 2015

3 x 2 6 x + 3 + 3 y 2 6 y + 3 + 4 + 4 x 4 y + 4 x y = 0 3x^{2} - 6x + 3 + 3y^{2} - 6y + 3 + 4 +4x - 4y + 4xy = 0

= 3 ( ( x 1 ) 2 ) + 3 ( ( y 1 ) 2 ) + 4 ( x 1 ) ( y 1 ) = 0 = 3((x - 1)^{2}) + 3(( y - 1)^{2}) + 4(x - 1)(y - 1) = 0

= ( x 1 ) 2 + ( y 1 ) 2 + 2 [ ( x 1 ) 2 + ( y 1 ) 2 + 2 ( x 1 ) ( y 1 ) ] = 0 =(x - 1)^{2} + (y - 1)^{2} +2[(x - 1)^{2} + (y - 1)^{2} + 2(x - 1)(y - 1)] = 0

( x 1 ) 2 + ( y 1 ) 2 + 2 [ ( x 1 ) + ( y 1 ) ] 2 = 0 ( x - 1)^{2} + (y - 1)^{2} + 2[(x - 1) + (y - 1)]^{2} = 0

( x , y ) = ( 1 , 1 ) (x , y ) =( 1 , 1 )

Mehul Chaturvedi
Jan 28, 2015

Please upvote my solution


Let x + y = a x+y=a and x y = b xy=b

Then we'll get 3 ( ( x + y ) 2 2 x y ) + 4 x y 10 ( x + y ) + 10 = 0 3((x+y)^2-2xy)+4xy-10(x+y)+10=0

3 a 2 6 b + 4 b 10 a + 10 = 0 \Rightarrow 3a^2-6b+4b-10a+10=0

( a ) ( 3 a 10 ) = ( 2 ) ( 3 b 5 ) . . . . . . . . . . ( 1 ) \Rightarrow (a)(3a-10)=(2)(3b-5)..........(1)

Now as it has integral solution therefore a = 2 a=2 (By comparing both sides)

Similarly substituting a = 2 a=2 in . . . . . . . . . ( 1 ) .........(1) we get b = 1 b=1

hence x + y = 2 x+y=\huge\boxed{2}

We can solve further and get x = y = 1 x=y=1

Don't beg for upvotes

Aditya Sky - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...