Find the sum integer values of x , y
3 x 2 + 3 y 2 + 4 x y − 1 0 x − 1 0 y + 1 0 = 0
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Please upvote my solution
Let x + y = a and x y = b
Then we'll get 3 ( ( x + y ) 2 − 2 x y ) + 4 x y − 1 0 ( x + y ) + 1 0 = 0
⇒ 3 a 2 − 6 b + 4 b − 1 0 a + 1 0 = 0
⇒ ( a ) ( 3 a − 1 0 ) = ( 2 ) ( 3 b − 5 ) . . . . . . . . . . ( 1 )
Now as it has integral solution therefore a = 2 (By comparing both sides)
Similarly substituting a = 2 in . . . . . . . . . ( 1 ) we get b = 1
hence x + y = 2
We can solve further and get x = y = 1
Don't beg for upvotes
Problem Loading...
Note Loading...
Set Loading...
3 x 2 − 6 x + 3 + 3 y 2 − 6 y + 3 + 4 + 4 x − 4 y + 4 x y = 0
= 3 ( ( x − 1 ) 2 ) + 3 ( ( y − 1 ) 2 ) + 4 ( x − 1 ) ( y − 1 ) = 0
= ( x − 1 ) 2 + ( y − 1 ) 2 + 2 [ ( x − 1 ) 2 + ( y − 1 ) 2 + 2 ( x − 1 ) ( y − 1 ) ] = 0
( x − 1 ) 2 + ( y − 1 ) 2 + 2 [ ( x − 1 ) + ( y − 1 ) ] 2 = 0
( x , y ) = ( 1 , 1 )