In △ A B C , D is mid point of B C .If ∠ A D B = 4 5 ∘ , ∠ A C D = 3 0 ∘ ,Find ∠ B A D
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
L e t x = ∠ D A B , ∠ A B D = 1 8 0 − x − 4 5 . ∠ C A D = 4 5 − 3 0 = 1 5 . A p p l y i n g S i n L a w , i n Δ s A B D a n d A C D , 2 B C A D = S i n ( x ) S i n ( 1 8 0 − x − 4 5 ) = S i n ( 1 5 ) S i n ( 3 0 ) 2 1 − c o t ( x ) = S i n ( 1 5 ) S i n ( 3 0 ) S o l v i n g w e g e t ∠ B A D = 3 0 o
You Can Simply use m-n Theorem In ABC. Let BAD = x And Easily we can see that ADC = 135 and CAD = 15 Apply m-n theorem (1+1)cot 135 = 1 cotx-1 cot15 2cot135=cotx-cot15 cotx = 2cot135+cot15 =root 3 x = 30 because x greater than 180 is not acceptable
Problem Loading...
Note Loading...
Set Loading...
Let ∠ B A D and ∠ B A C be θ and α respectively. Then α = θ + 1 5 ∘ . Using Sine Rule, we have:
a sin α = c sin 3 0 ∘ ⇒ sin α = 2 c a
2 a sin θ = c sin 4 5 ∘ ⇒ sin θ = 2 2 c a
⇒ sin θ = 2 sin α ⇒ 2 sin θ = sin α
⇒ 2 sin θ = sin θ + 1 5 ∘ = sin θ cos 1 5 ∘ + sin 1 5 ∘ cos θ
⇒ tan θ = 2 − cos 1 5 ∘ sin 1 5 ∘ = 3 1 ⇒ ∠ B A D = θ = 3 0 ∘ or 1 2 0 ∘ .
But if θ = 1 2 0 ∘ , B D > C D which is unacceptable. Therefore, θ = 3 0 ∘