Are you smarter than me? 54

Geometry Level 3

In A B C \triangle ABC , D D is mid point of B C BC .If A D B = 4 5 , A C D = 3 0 \angle ADB=45^{\circ},\angle ACD=30^\circ ,Find B A D \angle BAD


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jan 31, 2015

Let B A D \angle BAD and B A C \angle BAC be θ \theta and α \alpha respectively. Then α = θ + 1 5 \alpha = \theta + 15^\circ . Using Sine Rule, we have:

sin α a = sin 3 0 c sin α = a 2 c \dfrac {\sin{\alpha}}{a} = \dfrac {\sin{30^\circ}}{c}\quad \Rightarrow \sin{\alpha} = \dfrac {a}{2c}

sin θ a 2 = sin 4 5 c sin θ = a 2 2 c \dfrac {\sin{\theta}}{\frac {a}{2}} = \dfrac {\sin{45^\circ}}{c}\quad \Rightarrow \sin{\theta} = \dfrac {a}{2\sqrt{2}c}

sin θ = sin α 2 2 sin θ = sin α \Rightarrow \sin {\theta} = \dfrac {\sin{\alpha}}{\sqrt{2}}\quad \Rightarrow \sqrt{2} \sin {\theta} = \sin {\alpha}

2 sin θ = sin θ + 1 5 = sin θ cos 1 5 + sin 1 5 cos θ \Rightarrow \sqrt{2} \sin {\theta} = \sin {\theta+15^\circ} = \sin {\theta} \cos {15^\circ} + \sin {15^\circ}\cos {\theta}

tan θ = sin 1 5 2 cos 1 5 = 1 3 B A D = θ = 3 0 \Rightarrow \tan {\theta} = \dfrac {\sin {15^\circ}}{\sqrt{2}-\cos{15^\circ}} = \dfrac {1}{\sqrt{3}} \quad \Rightarrow \angle BAD = \theta = 30^\circ or 12 0 120^\circ .

But if θ = 12 0 \theta = 120^\circ , B D > C D BD > CD which is unacceptable. Therefore, θ = 3 0 \theta = \boxed{30^\circ}

For completeness, you should explain why θ = 12 0 \theta = 120 ^ \circ is not a solution.

In fact, that was the original answer given.

Calvin Lin Staff - 6 years, 4 months ago

Log in to reply

Thanks. You are very sharp.

Chew-Seong Cheong - 6 years, 4 months ago

L e t x = D A B , A B D = 180 x 45. C A D = 45 30 = 15. A p p l y i n g S i n L a w , i n Δ s A B D a n d A C D , A D B C 2 = S i n ( 180 x 45 ) S i n ( x ) = S i n ( 30 ) S i n ( 15 ) 1 c o t ( x ) 2 = S i n ( 30 ) S i n ( 15 ) S o l v i n g w e g e t B A D = 3 0 o Let~ x=\angle DAB, ~~\angle ABD=180 - x - 45 .~~\angle CAD =45 - 30=15.\\ Applying~ Sin~ Law, ~ in~ \Delta s~ ABD~and~ACD, \\ \dfrac{AD}{\frac {BC} 2}=\dfrac{Sin(180-x-45)}{Sin(x)}=\dfrac{Sin(30)}{Sin(15)}\\ \dfrac{1 - cot(x)}{\sqrt2} =\dfrac{Sin(30)}{Sin(15)}\\ Solving~ we~get~\angle BAD= \Large~~~~~~~~ \color{#D61F06}{30^o}

Prakhar Bindal
Feb 3, 2015

You Can Simply use m-n Theorem In ABC. Let BAD = x And Easily we can see that ADC = 135 and CAD = 15 Apply m-n theorem (1+1)cot 135 = 1 cotx-1 cot15 2cot135=cotx-cot15 cotx = 2cot135+cot15 =root 3 x = 30 because x greater than 180 is not acceptable

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...