Are you sure that it is an integer?

Algebra Level 3

5 7 4 3 + 139 + n 3 5\sqrt{7-4\sqrt{3}}+\sqrt{139+n\sqrt{3}}

Given that n n is an integer, how many n n such that the above expression is also an integer?

0 1 2 3 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chan Lye Lee
Nov 27, 2020

Note that 7 4 3 = 2 2 2 ( 2 ) ( 3 ) + ( 3 ) 2 = ( 2 3 ) 2 \displaystyle 7-4\sqrt{3} = 2^2-2\left(2\right)\left(\sqrt{3}\right)+\left(\sqrt{3}\right)^2=\left(2-\sqrt{3}\right)^2 . Hence 7 4 3 = 2 3 \displaystyle \sqrt{7-4\sqrt{3}}=2-\sqrt{3} .

Now 5 7 4 3 + 139 + n 3 = 10 5 3 + 139 + n 3 \displaystyle 5\sqrt{7-4\sqrt{3}}+\sqrt{139+n\sqrt{3}}=10-5\sqrt{3} +\sqrt{139+n\sqrt{3}} is an integer if 139 + n 3 = 5 3 + p \displaystyle \sqrt{139+n\sqrt{3}} = 5\sqrt{3} + p for some integer p p .

This means that 139 + n 3 = ( 5 3 + p ) 2 = 75 + p 2 + 10 p 3 \displaystyle 139+n\sqrt{3} = \left(5\sqrt{3} + p\right)^2 = 75+p^2 +10p\sqrt{3} . Thus 139 = 75 + p 2 \displaystyle 139 = 75+p^2 and n = 10 p \displaystyle n=10p . The former gives p = ± 8 \displaystyle p= \pm 8 , and hence ( p , n ) = ( 8 , 80 ) , ( 8 , 80 ) \displaystyle (p,n)=(8,80), (-8,-80) .

Hence there are 2 \boxed{2} such n n .

Chew-Seong Cheong
Nov 27, 2020

Let the given be N N . Then

N = 5 7 4 3 + 139 + n 3 = 5 2 2 2 ( 2 ) 3 + ( 3 ) 2 + 139 + n 3 = 5 ( 2 3 ) 2 + 139 + n 3 = 5 ( 2 3 ) + 139 + n 3 Make 139 + n 3 = ( m + 5 3 ) 2 = 10 5 3 + ( m + 5 3 ) 2 so that 5 3 disappears. = 10 5 3 + m + 5 3 \begin{aligned} N & = 5\sqrt{7-4\sqrt 3} + \sqrt {139+n\sqrt 3} \\ & = 5\sqrt{2^2-2(2)\sqrt 3 + (\sqrt 3)^2} + \sqrt{139+n\sqrt 3} \\ & = 5\sqrt{(2-\sqrt 3)^2} + \sqrt{139+n\sqrt 3} \\ & = 5(2-\sqrt 3) + \sqrt \blue{139+n\sqrt 3} & \small \blue{\text{Make }139+n\sqrt 3 = (m+5\sqrt 3)^2} \\ & = 10 - \red{5\sqrt 3} + \sqrt \blue{(m+\red{5\sqrt 3})^2} & \small \blue{\text{so that }\red{5\sqrt 3}\text{ disappears.}} \\ & = 10 - \red{\cancel{5\sqrt 3}} + m + \red{\cancel{5\sqrt 3}} \end{aligned}

Then we have 139 + n 3 = ( m + 5 3 ) 2 = m 2 + 10 m 3 + 75 139 + n\sqrt 3 = (m+5\sqrt 3)^2 = m^2 + 10m\sqrt 3 + 75 .

{ m 2 + 75 = 139 m 2 = 64 m = ± 8 n = 10 m = ± 80 N = 10 + m = 18 , 2 \implies \begin{cases} m^2 + 75 = 139 & \implies m^2 = 64 \implies m = \pm 8 \\ n = 10m = \pm 80 & \implies N = 10+m = 18, 2 \end{cases}

Therefore there are 2 \boxed 2 integer n n 's satisfying the equation.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...