Are You Sure that's not -1?

Calculus Level 5

Suppose s t = lim n r = 1 n 2 r t 2 r + 1 s_t = \displaystyle{\lim_{n \to \infty}} \sum_{r=1}^{n} \dfrac{2^r}{t^{2^r}+1} . Determine s 7 s 17 \dfrac{s_7}{s_{17}} .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Satvik Golechha
May 29, 2017

It's not 1 -1 , so let's make it 1 -1

s t = lim n r = 1 n 2 r t 2 r + 1 s_t = \displaystyle{\lim_{n \to \infty}} \sum_{r=1}^{n} \dfrac{2^r}{t^{2^r}+1} = s t = r = 1 2 r t 2 r + 1 s_t = \sum_{r=1}^{\infty} \dfrac{2^r}{t^{2^r}+1} = s t = r = 1 ( 2 r ) ( t 2 r 1 ) t 2 r + 1 1 s_t = \sum_{r=1}^{\infty} \dfrac{(2^r)(t^{2^r}-1)}{t^{2^{r+1}}-1} = s t = r = 1 ( 2 r ) ( t 2 r + 1 2 ) t 2 r + 1 1 s_t = \sum_{r=1}^{\infty} \dfrac{(2^r)(t^{2^r}+1-2)}{t^{2^{r+1}}-1} = s t = r = 1 ( 2 r ) t 2 r 1 2 r + 1 t 2 r + 1 1 s_t = \sum_{r=1}^{\infty} \dfrac{(2^r)}{t^{2^r}-1}-\dfrac{2^{r+1}}{t^{2^{r+1}}-1} = 2 t 2 1 \dfrac{2}{t^2-1} . Hence, s 7 s 17 = 6 \dfrac{s_7}{s_{17}} = 6

Guilherme Niedu
May 29, 2017

Let us denote as s t ( n ) s_t(n) the sum of the first n n terms of s t s_t , i.e.:

s t ( n ) = r = 1 n 2 r t 2 r + 1 \large \displaystyle s_t(n) = \sum_{r=1}^n \frac{2^r}{t^{2^r} + 1}

Looking at the first terms:

s t ( 1 ) = 2 t 2 + 1 \large \displaystyle s_t(1) = \frac{2}{t^2+1}

s t ( 2 ) = 2 t 2 + 1 + 4 t 4 + 1 = 2 ( t 4 + 2 t 2 + 3 ) t 6 + t 4 + t 2 + 1 \large \displaystyle s_t(2) = \frac{2}{t^2+1} + \frac{4}{t^4+1} = \frac{2(t^4 + 2t^2 + 3)}{t^6 + t^4 + t^2 + 1}

s t ( 3 ) = 2 t 2 + 1 + 4 t 4 + 1 + 8 t 8 + 1 = 2 ( t 12 + 2 t 10 + 3 t 8 + 4 t 6 + 5 t 4 + 6 t 2 + 7 ) t 14 + t 12 + t 8 + t 6 + t 4 + t 2 + 1 \large \displaystyle s_t(3) = \frac{2}{t^2+1} + \frac{4}{t^4+1} + \frac{8}{t^8+1} = \frac{2(t^{12} + 2t^{10} + 3t^8 + 4t^6 + 5t^4 + 6t^2 + 7)}{t^{14} + t^{12} + t^8 + t^6 + t^4 + t^2 + 1}

As a general formula:

s t ( n ) = 2 [ t 2 n + 1 4 + 2 t 2 n + 1 6 + 3 t 2 n + 1 8 + . . . + ( 2 n 3 ) t 4 + ( 2 n 2 ) t 2 + ( 2 n 1 ) ] t 2 n + 1 2 + t 2 n + 1 4 + . . . + t 2 + 1 \large \displaystyle s_t(n) = \frac{2 \left [ t^{2^{n+1} - 4} + 2t^{2^{n+1} - 6} + 3t^{2^{n+1} - 8} + ... + (2^n-3)t^4 + (2^n-2)t^2 + (2^n-1) \right ]}{t^{2^{n+1}-2} + t^{2^{n+1}-4} + ... + t^2 + 1}

Let us define:

K = t 2 n + 1 4 + 2 t 2 n + 1 6 + 3 t 2 n + 1 8 + . . . + ( 2 n 3 ) t 4 + ( 2 n 2 ) t 2 + ( 2 n 1 ) \large \displaystyle K = t^{2^{n+1} - 4} + 2t^{2^{n+1} - 6} + 3t^{2^{n+1} - 8} + ... + (2^n-3)t^4 + (2^n-2)t^2 + (2^n-1)

K t 2 = t 2 n + 1 2 + 2 t 2 n + 1 4 + 3 t 2 n + 1 6 + . . . + ( 2 n 3 ) t 2 + ( 2 n 2 ) t 2 + ( 2 n 1 ) \large \displaystyle Kt^2 = t^{2^{n+1} - 2} + 2t^{2^{n+1} - 4} + 3t^{2^{n+1} - 6} + ... + (2^n-3)t^2 + (2^n-2)t^2 + (2^n-1)

Subtracting them:

K ( t 2 1 ) = t 2 n + 1 2 + t 2 n + 1 4 + . . . + t 2 + 1 2 n \large \displaystyle K(t^2-1) = t^{2^{n+1} -2 } + t^{2^{n+1} - 4} + ... + t^2 + 1 - 2^n

K ( t 2 1 ) = t 2 n + 1 1 t 2 1 2 n \large \displaystyle K(t^2-1) = \frac{t^{2^{n+1}}-1}{t^2-1} - 2^n

K = t 2 n + 1 1 2 n ( t 2 1 ) ( t 2 1 ) 2 \color{#20A900} \boxed { \large \displaystyle K = \frac{t^{2^{n+1}}-1 - 2^n(t^2-1)}{(t^2-1)^2} } .

So:

s t ( n ) = 2 K t 2 n + 1 2 + t 2 n + 1 4 + . . . t 2 + 1 \large \displaystyle s_t(n) = \frac{2K}{t^{2^{n+1}-2} + t^{2^{n+1}-4} + ... t^2 + 1}

s t ( n ) = 2 t 2 n + 1 1 2 n ( t 2 1 ) ( t 2 1 ) 2 t 2 n + 1 1 t 2 1 \large \displaystyle s_t(n) = \frac{ 2\frac{t^{2^{n+1}}-1 - 2^n(t^2-1)}{(t^2-1)^2} }{ \frac{t^{2^{n+1}}-1}{t^2-1} }

s t ( n ) = 2 t 2 1 t 2 n + 1 1 2 n ( t 2 1 ) t 2 n + 1 1 \color{#20A900} \boxed { \large \displaystyle s_t(n) = \frac{2}{t^2-1} \cdot \frac{t^{2^{n+1}}-1 - 2^n(t^2-1)}{t^{2^{n+1}}-1} }

Then, s t s_t will be the limit of s t ( n ) s_t(n) as n n goes to \infty :

s t = lim n s t ( n ) \large \displaystyle s_t = \lim_{n \rightarrow \infty} s_t(n)

s t = 2 t 2 1 lim n t 2 n + 1 1 2 n ( t 2 1 ) t 2 n + 1 1 \large \displaystyle s_t = \frac{2}{t^2-1} \cdot \lim_{n \rightarrow \infty} \frac{t^{2^{n+1}}-1 - 2^n(t^2-1)}{t^{2^{n+1}}-1}

It is easy to see that this limit is 1 1 . Then:

s t = 2 t 2 1 \color{#20A900} \boxed { \large \displaystyle s_t = \frac{2}{t^2-1} }

Thus:

s 7 = 1 24 , s 17 = 1 144 , s 7 s 17 = 6 \color{#3D99F6} \large \displaystyle s_7 = \frac{1}{24}, s_{17} = \frac{1}{144}, \boxed{\large \displaystyle \frac{s_7}{s_{17}} = 6}

This is one of those instances where I'm torn between a solution that explains how one arrives at the calculations (which you provided) and one where there is a "magical formula" which calculates the answer but doesn't provide much insight as to how one can solve this problem.

Your solution shows that a telescoping method would work. In particular, s t ( n ) = 2 t 2 1 2 n + 1 t 2 n + 1 1 s_t (n) = \frac{ 2}{ t^2 - 1 } - \frac{ 2 ^ { n + 1 } } { t^ { 2 ^ {n+1 } } - 1 } . If we set U ( n + 1 ) = 2 n + 1 t 2 n + 1 1 U(n+1) = \frac{ 2 ^ { n + 1 } } { t^ { 2 ^ {n+1 } } - 1 } , then the n n th term can be written as s t ( n ) s t ( n 1 ) = U ( n + 1 ) + U ( n ) s_t (n) - s_t (n-1) = - U(n+1) + U(n)

Unless you have a lot of experience, it is hard to directly come up with

2 r t 2 r + 1 = 2 r + 1 t 2 r + 1 1 + 2 r t 2 r 1 \frac{ 2^r}{ t^{2^r} + 1 } = - \frac{ 2 ^ { r+1} } { t^{2^{r+1}} -1 } + \frac{ 2^r } { t^{2^r} - 1 }

Calvin Lin Staff - 4 years ago

Log in to reply

We were (not) expected to come up with the same in one of our tests. And after going through it 5-6 times, it feels quite intuitive. I've posted it as a direct solution thus.

Satvik Golechha - 4 years ago
Sangchul Lee
Mar 30, 2019

Write x = 1 / t x = 1/t so that the sum is given by s t = r = 1 2 r x 2 r 1 + x 2 r . s_t = \sum_{r=1}^{\infty} \frac{2^r x^{2^r}}{1 + x^{2^r}}. Now log-differentiating the formula 1 1 x 2 = r = 1 ( 1 + x 2 r ) , ( x < 1 ) \frac{1}{1-x^2} = \prod_{r=1}^{\infty}(1 + x^{2^r}), \qquad (|x| < 1) which easily follows by letting n n \to \infty to 1 x 2 n = ( 1 x 2 ) ( 1 + x 2 ) ( 1 + x 2 2 ) ( 1 + x 2 n 1 ) 1 - x^{2^n} = (1 - x^2)(1 + x^2)(1 + x^{2^2}) \cdots (1 + x^{2^{n-1}}) , we obtain 2 x 1 x 2 = r = 1 2 r x 2 r 1 1 + x 2 r , \frac{2x}{1-x^2} = \sum_{r=1}^{\infty} \frac{2^r x^{2^r-1}}{1 + x^{2^r}}, So it follows that s t = 2 x 2 1 x 2 = 2 t 2 1 . s_t = \frac{2x^2}{1-x^2} = \frac{2}{t^2 - 1}. From this, we easily find that s 7 / s 17 = 6 s_7 / s_{17} = 6 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...