Are you sure this can be done

Algebra Level 1

If 3 n = 5 3^n = 5 and 4 m = 8 4^m = 8 , what is the value of 9 n + m ? \large 9^{n+m} ?


The answer is 675.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

25 solutions

Wei Jie Tan
Sep 30, 2013

4 m = 8 4^m = 8

2 2 m = 2 3 2^{2m} = 2^3

2 m = 3 2m = 3

9 m = 3 2 m = 3 3 = 27 9^m = 3 ^{2m} = 3^3 = 27

3 n = 5 3^n = 5

9 n = 3 2 n = ( 3 n ) ( 3 n ) = 5 5 = 25 9^n = 3^{2n} = (3^n)*(3^n) = 5*5 = 25

S o , So,

9 n + m = ( 9 n ) ( 9 m ) = 25 27 = 675 9^{n+m} = (9^n)*(9^m) = 25*27 = 675

Fantastic solution!!

Mark Mottian - 7 years, 8 months ago

marvellous..................... how smart of you.

Sohaib Zahir Sayed - 7 years, 8 months ago

i like this way, thanks

ADRABI Abderrahim - 7 years, 8 months ago

that was helpful..

Misha Arain - 7 years, 8 months ago

wow its great

Juang Bhakti Hastyadi - 7 years, 8 months ago

goooooodd

Saikarthik Bathula - 7 years, 8 months ago

what a nice prblem

Paolo Alegro - 7 years, 8 months ago

Nice!

Rui Sheng Woon - 7 years, 8 months ago

nice problem

Dhanush Wali - 7 years, 8 months ago

great

vaishnav garg - 7 years, 8 months ago

how clever of you

Hifdziyah Rifqi Rifqi - 7 years, 8 months ago

What a great solution

Putri Rachdiningrum - 7 years, 8 months ago

You really clever. I like this (y)

Hafizh Ahsan Permana - 7 years, 8 months ago

Ótimo, muito obrigada!

FERNANDA PAES - 7 years, 8 months ago

Gr8 thnx a lot

Ishika Ghosh - 7 years, 8 months ago
William Mitchell
Sep 29, 2013

Finding 9 n + m 9^{n+m} is the same as finding the product of 9 n 9^n and 9 m 9^m .

If we consider the expression 3 n = 5 3^n=5 , we see that raising each side to the second power gives us:

3 2 n = 5 2 3^{2\cdot n}=5^2

9 n = 25 9^n=25 .

Now that we know the value of 9 n 9^n , we focus on finding the value of 9 m 9^m . To do so, we must solve for m m , which can be done as follows:

4 m = 8 4^m=8

m log 2 4 = log 2 8 m\log_24=\log_28

m = log 2 8 log 2 4 m=\frac{\log_28}{\log_24}

m = 3 2 m=\frac{3}{2}

Now that we know m m we can compute 9 m 9^m .

9 m = 9 3 9^m=\sqrt{9^3}

9 m = 729 9^m=\sqrt{729}

9 m = 27 9^m=27 .

Thus, 9 n + m = 9 n 9 m = 25 27 = 675 9^{n+m}=9^n9^m=25\cdot27=\boxed{675} .

there's given 3^n = 5 and 4^m = 8 => 2^2m =2^3 => 2m =3 so, m = 3/2

now 9^n+m = 3^2n+2m =3^2n.3^2m =(3^n)^2.3^2.(3/2) =5^2.3^3 =25.27 =675

Mashfiqur Rahaman - 7 years, 8 months ago

good

Asih Sumarsih - 7 years, 8 months ago
Khalid Younis
Sep 29, 2013

8 = 2 3 8=2^3

4 m = ( 2 2 ) m = 2 2 m 4^m=(2^2)^m=2^{2m}

4 m = 8 2 2 m = 2 3 2 m = 3 4^m=8 \Rightarrow 2^{2m}=2^3 \Rightarrow 2m=3

3 n = 5 ( 3 n ) 2 = 5 2 3 2 n = 25 3^n=5 \Rightarrow (3^n)^2=5^2 \Rightarrow 3^{2n}=25

9 n + m = ( 3 2 ) n + m = 3 2 n + 2 m = 3 2 n × 3 2 m = 25 × 3 3 = 675 9^{n+m} = (3^2)^{n+m} = 3^{2n+2m} = 3^{2n} \times 3^{2m} = 25 \times 3^3 = \fbox{675}

I prefer this solution. :)

Julius Jan Corpuz - 7 years, 8 months ago
Sindhu Kurnia
Oct 4, 2013

3 n = 5 3^{n} = 5 4 m = 2 2 m = 8 4^{m} = 2^{2*m} = 8 so that m = 3 / 2 m = 3/2

9 ( n + 3 / 2 ) = 3 2 ( 3 / 2 + n ) = 3 3 + ( 3 n ) 2 = 3 3 + 5 2 = 675 9^{(n+3/2)} = 3^{2*(3/2+n)} = 3^{3}+(3^{n})^{2} = 3^3+5^2 = 675

Genius solution, but I think there is a typo. it should 3 3 ( 3 n ) 2 3^{3}*(3^{n})^{2} not 3 3 + ( 3 n ) 2 3^{3}+(3^{n})^{2}

Dim Dam - 7 years, 8 months ago
Jung Min Lee
Sep 29, 2013

3 n 3^{n} = 5 5 ,

9 n 9^{n} = ( 3 n ) 2 (3^{n})^{2} = 25 25 .

( 2 2 ) m (2^{2})^{m} = 2 3 2^{3} ,

m= 3 2 \frac{3}{2} , so ( 9 m 9^{m} )= 27 27

Hence 9 n + m 9^{n+m} = 25 × 27 25 \times 27 = 675 675

Abubakarr Yillah
Jan 8, 2014

3 n = 5 {3^n}={5}

Taking *ln on both sides* l n 3 n = l n 5 {ln3^n}={ln5}

we get n l n 3 = l n 5 {nln3}={ln5}

and n = l n 5 l n 3 {n}=\frac{ln5}{ln3}

4 m = 2 2 m = 2 3 {4^m}={2}^{2m}={2^3}

2 2 m = 2 3 {2^2m}={2^3}

applying the laws of indices, 2 m = 3 {2m}={3}

and m = 3 2 {m}=\frac{3}{2}

i.e. 9 l n 5 l n 3 + 3 2 9^{\frac{ln5}{ln3}+\frac{3}{2}}

which gives 675 \boxed{675}

Jonathan Lowe
Sep 30, 2013

3 n = 5 n = log 3 5 3^{n}=5 \implies n=\log_{3} 5 and 4 m = 8 n = log 4 8 4^{m}=8 \implies n=\log_{4} 8 .

log 4 8 = log 4 4 × 2 = log 4 4 + log 4 2 = 1 + 1 2 = 3 2 \log_{4} 8 = \log_{4} 4 \times 2 = \log_{4} 4 + \log_{4} 2 = 1 + \frac{1}{2} = \frac{3}{2}

9 n + m = 9 log 3 5 + 3 2 = 9 3 2 × 9 log 3 5 \implies 9^{n+m} = 9^{\log_{3} 5 + \frac{3}{2}} = 9^{\frac{3}{2}} \times 9^{\log_{3} 5}

9 log 3 5 = ( 3 2 ) log 3 5 = 3 2 × log 3 5 = 3 log 3 25 = 25 9^{\log_{3} 5} = \left(3^{2}\right)^{\log_{3} 5} = 3^{2 \times \log_{3} 5} = 3^{\log_{3} 25} = 25

9 n + m = 9 3 2 × 25 = 27 × 25 = 675 \implies 9^{n+m} = 9^{\frac{3}{2}} \times 25 = 27 \times 25 = 675

Manoj Pandey
Oct 2, 2013

1. 1. 4 m = 8 4^m=8

2 2 m = 2 3 \implies2^{2m}=2^3

2 m = 3 \implies 2m=3

m = 3 2 \implies m=\frac{3}{2}

2. 2. 3 n = 5 3^n=5

n = l o g 3 5 \implies n=log_35

N o w Now , 9 n + m 9^{n+m}

3 2 n + m \implies 3^{2{n+m}}

3 2 l o g 3 5 + l o g 3 3 3 / 2 \implies 3^{2{log_35+log_33^{3/2}}}

3 l o g 3 5. 3 3 / 2 2 \implies 3^{log_3{5.3^{3/2}}^{2}}

( 5. 3 3 / 2 ) 2 \implies ({5.3^{3/2}})^2

25. 3 3 \implies 25.3^3

25.27 \implies 25.27

675 \implies 675

Ivan Sekovanić
Sep 30, 2013

First of all, let us modify the original problem a bit:

9 n + m = 3 2 n + 2 m = 3 2 n 3 2 m 9^{n+m}=3^{2n+2m}=3^{2n}3^{2m}

Noting that 3 2 n = ( 3 n ) 2 = 25 3^{2n}=(3^{n})^{2}=25 , we can see that the original expression becomes 25 3 2 m 25\cdot3^{2m} . This means that all we need to do is to find m m .

Let us now take a look at 4 m = 8 4^{m}=8 . Note that this is equivalent to 2 2 m = 2 3 2^{2m}=2^{3} . Furthermore, by using the fact that l o g x x = 1 log_{x}x=1 , we get

2 2 m = 2 3 log 2 2 2 m = log 2 2 3 2 m = 3 m = 3 2 2^{2m}=2^{3} \Rightarrow \log_{2}2^{2m}=\log_{2}2^{3} \Rightarrow 2m=3 \Rightarrow m=\frac{3}{2}

Thus, if we go back to the original expression we will finally get

25 3 2 m = 25 3 3 = 25 27 = 675 25\cdot 3^{2m}=25\cdot 3^{3}=25\cdot 27=675 .

Or, I could have simply used the fact that 2 2 m = 2 3 2 m = 3 m = 3 2 2^{2m}=2^{3} \Rightarrow 2m=3 \Rightarrow m=\frac{3}{2} . Silly me.

Ivan Sekovanić - 7 years, 8 months ago
Valerian Pratama
Feb 13, 2014

3 n 3^{n} =5,means n= log 3 5 \log _{ 3 }{ 5 }

4 m 4^{m} =8,m=4 3 2 {\frac { 3 }{ 2 } }

9 n + m = 9 log 3 5 + 3 2 9^{n+m}=9^{ \log _{ 3 }{ 5 } + \frac { 3 }{ 2 }}

=675(rounded)

Tamoghna Banerjee
Sep 30, 2013

So here it goes. Let us break 9 as the square of 3. The statement 9 to the power (n+m) then becomes 3 to the power (2n+2m). This implies 9 to the power 2n is multiplied by 9 to the power 2m. What we need now are the values of m and n. Look carefully that 4 to the power m is actually 2 to the power 2m and 8 is 2 cubed The bases being equal, we have 2m equal to 3. This gives m =3/2 and 2m = 3. Moreover 3 to the power 2n is actually 3 to the power n multiplied by itself. This implies 5 multiplied by itself(for obvious reasons!). Thus, we are done with finding the required values if not the individual values of m and n respectively! Now 3 to the power (2n+2m) can be written as 3 to the power 2n multiplied by 3 to the power 2m. We have got the value 3 to the pwer 2n which is fortunately the 5 squared and 3 to the power 2m is actually 3 cubed. Thus, here it is. 5 squared multiplied by 3 cubed gives you 675. Solved!

Nodar Beridze
Feb 27, 2014
  • 3^{n}=5; 4^{m}=8 => 2^{2m}=8 => 2m=3

  • 9^{n+m}=9^{n} * 9^{m} = 3^{2n} * 3^{2m} = (3^{n})^{2} * 3^{2m} = 5^{2} * 3^{3} = 25*27= 675

Yoga Nugraha
Oct 6, 2013

The question is 9 n + m 9^{n+m} , so we can change it as 9 n × 9 m 9^{n} \times 9^{m} . First, let's find 9 n 9^{n} . 9 n = 9 3 l o g 5 = 9 2 × 9 l o g 5 = ( 9 9 l o g 5 ) 2 = 5 2 = 25 9^{n} = 9^{^{3}log5} = 9^{2 \times ^{9}log5} = (9^{^{9}log5})^{2} = 5^{2} = 25 Now, for the 9 m 9^{m} 9 m = 9 4 l o g 8 = 9 3 2 × 8 l o g 8 = 9 3 2 = 27 9^{m} = 9^{^{4}log8} = 9^{\frac{3}{2} \times ^{8}log8} = 9^{\frac{3}{2}} = 27 So, 9 n × 9 m = 25 × 27 = 675 9^{n} \times 9^{m} = 25 \times 27 = 675

Omar Pulido
Oct 5, 2013

Well there are many ways of approaching this problem. Im my way, there are some basic principles that one should know in order to solve this question.

a^{b+c) = a^b + a^c

Also, you should know that you can substitute 9 9 for 3 2 3^2

So the question asks what is the value of 9 m + n 3 2 ( n + m ) 3 2 n × 3 2 m 9^{m+n} \implies 3^{2(n+m)} \implies 3^{2n} \times 3^{2m}

Now its rather easy to solve for 'm' (from the equation 4 m = 8 4^m = 8 ) 'm' is equal to 3/2

And we don't actually have solve for 'm', rather because we know that 3 n = 5 3^n = 5 , we know that 3 2 n = 25 3^{2n} ={25} because we square both sides of the equation.

3 2 m 3 2 ( 3 / 2 ) 27 3^{2m} \implies 3^{2 (3/2)} \implies 27

So we want to find 9 m + n 3 2 n × 3 2 m 25 × 27 675 9^{m+n} \implies 3^{2n} \times 3^{2m} \implies 25 \times 27 \implies 675

Ilham Adiyaksa
Oct 5, 2013
  1. 4^m = 8 2^2m = 2^3 2m=3 m=3/2

so, 9^n x 9^m = 3^n x 3^n x 3^2m = 5 x 5 x 27 = 675

Albert Gav
Oct 5, 2013

4^m=2^2m=8=2^3 => m=3/2.

9^(n+m)=9^n.9^m

9^n=3^2n=5^2=25.

9^m=9^(3/2)=27.

25.27=675

Ahaan Rungta
Oct 2, 2013

We have 3 n = 5 3^n = 5 , so 9 n = = ( 3 2 ) n = ( 3 n ) 2 = 25 9^n = = \left( 3^2 \right)^n = \left( 3^n \right)^2 = 25 . Also, 4 m = 8 4^m = 8 , so m = 3 2 m = \dfrac {3}{2} . But note that 9 n + m = 9 n 9 m = 25 9 3 2 = 25 27 = 675 . 9^{n+m} = 9^n \cdot 9^m = 25 \cdot 9^{\frac{3}{2}} = 25 \cdot 27 = \boxed {675}.

9^(n+m) can be written as (3^n)^2 X 9^m which is equal to 5^2 x 9^m since 3^n=5. Hence, result becomes 25 x 9^m. Now since 4^m=8; m=2x1/2 (sq.root2); hence 9^m = 81. Thus result is 25 x 27 i.e. 675.

Gaurav Simha
Oct 1, 2013

If 3^n=5, 9^n=25 (squaring on both sides) - (1). And, since 4^m=8, 2^(2m)=2^(3) (since 4=2^2 & 8=2^3). Therefore, 2m=3 (f bases are same, exponents can be equated) =>m=3/2. We want 9^(n+m)= (9^n) x (9^m) = (25) x (9^(3/2)) = (25) x {[9^(1/2)]^3}
= (25) x {[3]^3} = (25) x {27} = (25) x {25+2} = 25x25 + 25x2 = 625 + 50
= 675.

Mohsin Rizvi
Oct 1, 2013

9^n+m= 9^n * 9^m=(3^n)^2 * (3^2)^m since 4^m=8 therefore 2^2m=2^3 hence 2m=3 m=1.5 5^2 * 3^(2*1.5)=25 * 27=675

Jian Rong
Oct 1, 2013

3^n = 5 n(log 3) = (log 5) n= 1.46

4^m=8 2^2m=2^3 2m=3 m=1.5

n+m= 1.46+1.5 = 2.96

9^2.96 =675

Zhang Lulu
Oct 1, 2013

Although we cannot determine n, we can determine m. Note that:

4 = 4 1 4^{1} < 4 + 4 = 8 < 8 + 8 = 4 2 4^{2 }

So a reasonable guess for m is 1.5 knowing how a quadratic graph behaves. In fact 4 1.5 4 ^ {1.5} = 8.

Now note that:

9 m + n 9^{m+n} = 9 m × 9 n 9^{m} \times 9^{n} = 9 1.5 × 9 n 9^{1.5} \times 9^{n} = 27 × 9 n 27 \times 9^{n} (*)

Remark that:

9 n = ( 3 2 ) n = ( 3 n ) 2 = 5 2 = 25 9^{n} = (3^{2})^{n} = (3 ^{n})^{2} = 5^{2} = 25

Subbing this into (*) gives us that the answer to this question is 25 × 27 = 675 25 \times 27 = 675

Daniel Ferreira
Sep 30, 2013

De 4 m = 8 4^m = 8 temos que:

( 2 2 ) m = 8 2 2 m = 2 3 2 m = 3 m = 3 2 (2^2)^m = 8 \Rightarrow 2^{2m} = 2^3 \Rightarrow 2m = 3 \Rightarrow \boxed{m = \frac{3}{2}}

Segue que,

9 n + m 3 2 n + 2 m 3 2 n 3 2 m 3 n 3 n 3 3 5 5 27 675 9^{n + m} \Rightarrow 3^{2n + 2m} \Rightarrow 3^{2n} \cdot 3^{2m} \Rightarrow 3^n \cdot 3^n \cdot 3^{3} \Rightarrow 5 \cdot 5 \cdot 27 \Rightarrow \boxed{\boxed{675}}

Abrar Nihar
Sep 30, 2013

3 n = 5 n = log 3 5 3^n = 5 ~~~ \Longrightarrow ~~~n= \log_3 5

~

4 m = 8 m = log 4 8 4^m=8 ~~~ \Longrightarrow ~~~m = \log_4 8

~

9 m + n = 9 m 9 n = 9 log 4 8 9 log 3 5 \therefore ~~~9^{m+n} ~~~=~~~ 9^m \cdot 9^n ~~~=~~~ 9^{\log_4 8} \cdot 9^{\log_3 5}

= ( 3 2 ) log 4 8 ( 3 2 ) log 3 5 = 3 2 log 4 8 3 2 log 3 5 ~~~~~=(3^2)^{\log_4 8} \cdot (3^2)^{\log_3 5}~=3^{2\log_4 8} \cdot 3^{2\log_3 5}

= 3 log 4 8 2 3 log 3 5 2 = 3 2 log 4 64 3 log 3 25 ~~~~~=3^{\log_4 8^2} \cdot 3^{\log_3 5^2}~=3^{2\log_4 64} \cdot 3^{\log_3 25}

= 3 log 4 4 3 3 log 3 25 = 3 3 × 25 = 27 × 25 = 675 ~~~~~=3^{\log_4 4^3} \cdot 3^{\log_3 25} = 3^3 \times 25 = 27 \times 25 = \fbox{675}

Adrabi Abderrahim
Sep 30, 2013

we've 3 n = 5 3^n = 5 , and 4 m = 8 4^m = 8 , so:

n = l o g 3 ( 5 ) n = log_3(5) and m = l o g 4 ( 8 ) m = log_4(8) ,

than :

n + m = l o g 3 ( 5 ) + l o g 4 ( 8 ) = l o g 9 ( 675 ) = l o g ( 675 ) l o g ( 9 ) n + m = log_3(5) + log_4(8) = log_9(675) = \frac{log(675)}{log(9)}

also we've:

x ( 1 l o g ( x ) ) = e x^{(\frac{1}{log(x)})} = e because by add log to both sides we've:

l o g ( x ( 1 l o g ( x ) ) ) = l o g ( e ) log(x^{(\frac{1}{log(x)})}) = log(e)

( 1 l o g ( x ) ) × l o g ( x ) = 1 (\frac{1}{log(x)}) \times log(x) = 1

1 = 1 1 = 1

so:

9 ( l o g 9 ( 675 ) ) = 9 ( l o g ( 675 ) l o g ( 9 ) ) = ( 9 ( 1 l o g ( 9 ) ) ) l o g ( 675 ) = e l o g ( 675 ) = 675 9^{(log_9(675))} = 9^{( \frac{log(675)}{log(9)})} = (9^{(\frac{1}{log(9)})})^{log(675)} = e^{log(675)} = 675

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...