. Find the area bounded by , , and .
Give the answer correct upto two decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We need the two integrals I 1 I 2 = = = = ∫ 0 2 1 π x tan x d x = ∫ 0 2 1 π sin x cos x x sin x d x = 2 ∫ 0 2 1 π sin 2 x x sin x d x 2 2 1 ∫ 0 π sin x x sin 2 1 x d x = − 2 2 1 ∂ a ∂ F ( 2 1 , 2 1 ) = − 2 2 1 G ′ ( 2 1 ) , ∫ 0 2 1 π x 2 cot x d x = ∫ 0 2 1 π sin x cos x x 2 cos x d x = 2 ∫ 0 2 1 π sin 2 x x 2 cos x d x 4 2 1 ∫ 0 π sin x x 2 cos 2 1 x d x = − 4 2 1 ∂ a 2 ∂ 2 F ( 2 1 , 2 1 ) = − 4 2 1 G ′ ′ ( 2 1 ) , where we are using the standard integral F ( ν , a ) = ∫ 0 π sin ν − 1 x cos a x d x = 2 ν − 1 ν B ( 2 1 ( ν + a + 1 ) , 2 1 ( ν − a + 1 ) ) π cos ( 2 1 a π ) , valid for ν > 0 , and so G ( a ) = F ( 2 1 , a ) = B ( 4 3 + 2 a , 4 3 − 2 a ) 2 2 3 π cos ( 2 1 a π ) . Both integrals can be evaluated in terms of polygamma functions, and then simplified, yielding I 1 = ∫ 0 2 1 π x tan x d x I 2 = ∫ 0 2 1 π x 2 cot x d x = = 4 2 π [ π + ln 4 ] 4 8 2 π [ 5 π 2 − 6 π ln 4 − 3 ( ln 4 ) 2 ] . and hence ∫ 0 2 1 π f ( x ) d x = I 1 + I 2 = 4 2 π [ π + ln 4 ] + 4 8 2 π [ 5 π 2 − 6 π ln 4 − 3 ( ln 4 ) 2 ] = 3 . 3 2 2 2 7