Area

Calculus Level 4

f ( x ) = x tan x + x 2 cot x f(x) = x \sqrt{\tan x} + x^2 \sqrt{\cot x} . Find the area bounded by f ( x ) f(x) , y = 0 y=0 , x = 0 x=0 and x = π / 2 x=\pi/2 .

Give the answer correct upto two decimal places.


The answer is 3.32.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Mar 28, 2016

We need the two integrals I 1 = 0 1 2 π x tan x d x = 0 1 2 π x sin x d x sin x cos x = 2 0 1 2 π x sin x sin 2 x d x = 1 2 2 0 π x sin 1 2 x sin x d x = 1 2 2 F a ( 1 2 , 1 2 ) = 1 2 2 G ( 1 2 ) , I 2 = 0 1 2 π x 2 cot x d x = 0 1 2 π x 2 cos x d x sin x cos x = 2 0 1 2 π x 2 cos x sin 2 x d x = 1 4 2 0 π x 2 cos 1 2 x sin x d x = 1 4 2 2 F a 2 ( 1 2 , 1 2 ) = 1 4 2 G ( 1 2 ) , \begin{array}{rcl} I_1 & = & \displaystyle \int_0^{\frac12\pi} x \sqrt{\tan x}\,dx \; = \; \int_0^{\frac12\pi} \frac{x \sin x\,dx}{\sqrt{\sin x \cos x}} \; = \; \sqrt{2}\int_0^{\frac12\pi} \frac{x \sin x}{\sqrt{\sin 2x}}\,dx \\ & = & \displaystyle \frac{1}{2\sqrt{2}}\int_0^\pi \frac{x \sin \tfrac12x}{\sqrt{\sin x}}\,dx \; = \; -\frac{1}{2\sqrt{2}}\frac{\partial F}{\partial a}\big(\tfrac12,\tfrac12\big) \; = \; -\frac{1}{2\sqrt{2}} G'(\tfrac12)\;, \\ I_2 & = & \displaystyle \int_0^{\frac12\pi} x^2 \sqrt{\cot x}\,dx \; = \; \int_0^{\frac12\pi} \frac{x^2 \cos x\,dx}{\sqrt{\sin x \cos x}} \; = \; \sqrt{2} \int_0^{\frac12\pi} \frac{x^2 \cos x}{\sqrt{\sin2x}}\,dx \\ & = & \displaystyle \frac{1}{4\sqrt{2}}\int_0^\pi \frac{x^2 \cos \tfrac12x}{\sqrt{\sin x}}\,dx \; = \; -\frac{1}{4\sqrt{2}} \frac{\partial^2 F}{\partial a^2}\big(\tfrac12,\tfrac12\big) \; = \; -\frac{1}{4\sqrt{2}} G''(\tfrac12)\;, \end{array} where we are using the standard integral F ( ν , a ) = 0 π sin ν 1 x cos a x d x = π cos ( 1 2 a π ) 2 ν 1 ν B ( 1 2 ( ν + a + 1 ) , 1 2 ( ν a + 1 ) ) , F(\nu,a) \; = \; \int_0^\pi \sin^{\nu-1}x\, \cos ax\,dx \; = \; \frac{\pi \cos\big(\frac12 a \pi\big)}{2^{\nu-1} \nu B\big(\frac12(\nu+a+1),\frac12(\nu-a+1)\big)} \;, valid for ν > 0 \nu > 0 , and so G ( a ) = F ( 1 2 , a ) = 2 3 2 π cos ( 1 2 a π ) B ( 3 + 2 a 4 , 3 2 a 4 ) . G(a) \; = \; F(\tfrac12,a) \; =\; \frac{2^{\frac32} \pi \cos(\tfrac12 a \pi)}{B\big(\tfrac{3+2a}{4},\tfrac{3-2a}{4}\big)} \;. Both integrals can be evaluated in terms of polygamma functions, and then simplified, yielding I 1 = 0 1 2 π x tan x d x = π 4 2 [ π + ln 4 ] I 2 = 0 1 2 π x 2 cot x d x = π 48 2 [ 5 π 2 6 π ln 4 3 ( ln 4 ) 2 ] . \begin{array}{rcl} \displaystyle I_1 \; = \; \int_0^{\frac12\pi} x\sqrt{\tan x}\,dx & = & \displaystyle \frac{\pi}{4\sqrt{2}}\big[\pi + \ln4\big] \\ \displaystyle I_2 \; = \; \int_0^{\frac12\pi} x^2\sqrt{\cot x}\,dx & = & \displaystyle \frac{\pi}{48\sqrt{2}}\big[5 \pi^2 - 6 \pi \ln4 - 3 (\ln4)^2\big]\;. \end{array} and hence 0 1 2 π f ( x ) d x = I 1 + I 2 = π 4 2 [ π + ln 4 ] + π 48 2 [ 5 π 2 6 π ln 4 3 ( ln 4 ) 2 ] = 3.32227 \int_0^{\frac12\pi} f(x)\,dx \; =\; I_1 + I_2 \; =\; \frac{\pi}{4\sqrt{2}}\big[\pi + \ln4\big] \,+\, \frac{\pi}{48\sqrt{2}}\big[5 \pi^2 - 6 \pi \ln4 - 3 (\ln4)^2\big] \; = \; \boxed{3.32227}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...