Area

Geometry Level 1

In the rectangle shown above, if the area of the green region is 25, what is the area of the blue region?

30 25 15 20

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Toshit Jain
Apr 12, 2017

W e k n o w , i f a a n d a P a r a l l e l o g r a m l i e o n t h e s a m e b a s e a n d b e t w e e n s a m e p a r a l l e l s We \space know \space , \space if \space a \space \triangle \space and \space a \space Parallelogram \space lie \space on \space the \space same \space \space base \space and \space between \space same \space parallels

t h e n A r e a o f = 1 2 × A r e a o f P a r a l l e l o g r a m then \space Area \space of \space \triangle \space=\space \frac{1}{2} \space \times \space Area \space of \space Parallelogram

A r e a o f g r e e n r e g i o n = 1 2 × A r e a o f R e c t a n g l e \Rightarrow Area \space of \space green \space region \space=\frac{1}{2} \space \times \space \space Area \space of \space Rectangle

A r e a o f b l u e r e g i o n + A r e a o f g r e e n r e g i o n = A r e a o f R e c t a n g l e \Rightarrow Area \space of \space blue \space region \space+\space Area \space of \space green\space region\space=\space Area\space of \space Rectangle

A r e a o f b l u e r e g i o n = A r e a o f g r e e n r e g i o n = 25 \therefore \space Area \space of \space blue \space region \space= \space Area \space of \space green\space region \space=\space \boxed{25}

Aaryan Vaishya
Nov 29, 2018

Split the green triangle into 2 right triangles.You will see that the triangles will be equivalent in size to the other corresponding blues so the blues and the greens must be equal.

Edwin Gray
Sep 27, 2018

The area of the green triangle = (1/2)bh = 25. Let the top side of the rectangle be split into x and b - x, each being met by the green triangle vertex Then the blue area = (1/2)bx + (1/2)x(b - x) = (1/2)bh = 25. Ed Gray

Aaryan Maheshwari
Jun 17, 2017

Let the base the triangle be b b and its height be h h . Then, we have:

A r e a o f t h e t r i a n g l e = Area\space of\space the\space triangle\space = 1 2 × b × h = 25 \frac{1}{2}\space \times\space b\space \times\space h\space =\space 25

b × h = 50 \Rightarrow\space b\space \times\space h\space =\space 50 . So, the area of the rectangle is 50.

A r e a o f t h e b l u e r e g i o n = A r e a o f t h e r e c t a n g l e A r e a o f t h e g r e e n r e g i o n = 50 25 = 25 \therefore\space Area\space of\space the\space blue\space region\space =\space Area\space of\space the\space rectangle\space -\space Area\space of\space the\space green\space region\space =\space 50\space -\space 25\space =\space 25 .

Marta Reece
Apr 16, 2017

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...