Area

Geometry Level 5

In A B C \triangle ABC , E E is the midpoint of A B AB , F F is the midpoint of B C BC and D D is the midpoint of A C AC . A G AG is an altitude of A B C \triangle ABC . If A B = 72 AB=72 , B C = 60 BC=60 and A C = 48 AC=48 , what is the area of E F G D EFGD . If your answer is of the form a b a\sqrt{b} , where a a and b b are positive integers with b b square-free, give your answer as a + b a+b .


The answer is 250.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Kushal Bose
May 9, 2017

Find c o s B cosB using cosine rule which is c o s B = 3 4 cosB=\dfrac{3}{4}

Connect G and D then EFGD is a trapezium as G F E D GF || ED .

As triangle ABG is right-angled so, using the value of cosB we can find BG=54 and AG= 18 7 18 \sqrt{7} .

As D and E are mid-points of AB and AC then D E B C DE || BC and BF=DE=60/2=30

So, B G = D E + F G = 54 BG=DE+FG=54

The height is also divided at midpoint because D E B C DE || BC and D is the mid-point of AC.

So, height of trapezium is A G / 2 = 9 7 AG/2=9 \sqrt{7}

So, area of trapezium is 1 2 ( D E + F G ) × 9 7 = 1 2 × 54 × 9 7 = 243 7 \dfrac{1}{2} (DE+FG) \times 9 \sqrt{7}=\dfrac{1}{2} \times 54 \times 9 \sqrt{7}=243 \sqrt{7}

Draw G D GD to form trapezoid E F G D EFGD .

G D GD is the median to hypotenuse C A CA of right A G C \triangle AGC . Therefore, G D = 1 2 A C = 1 2 ( 48 ) = 24 GD=\dfrac{1}{2}AC=\dfrac{1}{2}(48)=24 .

E F = 1 2 A C = 1 2 ( 48 ) = 24 EF=\dfrac{1}{2}AC=\dfrac{1}{2}(48)=24 ; \large ; E D = 1 2 B C = 1 2 ( 60 ) = 30 ED=\dfrac{1}{2}BC=\dfrac{1}{2}(60)=30 ; \large ; F D = 1 2 A B = 1 2 ( 72 ) = 36 FD=\dfrac{1}{2}AB=\dfrac{1}{2}(72)=36

Apply pythagorean theorem on A G C \triangle AGC and A G B \triangle AGB . A G 2 = 4 8 2 C G 2 AG^2=48^2-CG^2 and A G 2 = 7 2 2 ( 60 C G ) 2 AG^2=72^2-(60-CG)^2 . We find G C = 6 GC=6

Compute A 1 A_1 : \large : \color{#D61F06}\implies s = 24 + 24 + 6 2 = 27 s=\dfrac{24+24+6}{2}=27 \color{#3D99F6}\implies A 1 = 27 ( 27 24 ) ( 27 24 ) ( 27 6 ) = 5103 = 27 7 A_1=\sqrt{27(27-24)(27-24)(27-6)}=\sqrt{5103}=27\sqrt{7}

Compute A 2 A_2 : \large : \color{#D61F06}\implies s = 30 + 24 + 36 2 = 45 s=\dfrac{30+24+36}{2}=45 \color{#3D99F6}\implies A 2 = 45 ( 45 30 ) ( 45 24 ) ( 45 36 ) = 127575 = 135 7 A_2=\sqrt{45(45-30)(45-24)(45-36)}=\sqrt{127575}=135\sqrt{7}

Compute A 3 A_3 : \large : \color{#D61F06}\implies A 3 = A 2 = 135 7 A_3=A_2=135\sqrt{7}

Compute area of A B C \triangle ABC : \large : \color{#D61F06}\implies s = 60 + 48 + 72 2 = 90 s=\dfrac{60+48+72}{2}=90 \color{#3D99F6}\implies A A B C = 90 ( 90 60 ) ( 90 48 ) ( 90 72 ) = 2041200 = 540 7 A_{ABC}=\sqrt{90(90-60)(90-48)(90-72)}=\sqrt{2041200}=540\sqrt{7}

Finally,

A E F G D = A A B C A 1 A 2 A 3 = 540 7 27 7 135 7 135 7 = 243 7 A_{EFGD}=A_{ABC}-A_1-A_2-A_3=540\sqrt{7}-27\sqrt{7}-135\sqrt{7}-135\sqrt{7}=243\sqrt{7}

It follows that,

a + b = 243 + 7 = 250 a+b=243+7=250

A B = 60 = 12 5 , B C = 72 = 12 6 , A C = 48 = 12 4. A r e a o f A B C 1 4 1 2 2 15 5 7 3 = 540 7 . A G = 2 540 7 60 = 18 7 . S o i n A G C b y P y t h a g o r e a n T h e o r e m , C G = 6. B u t C F = 1 2 60 = 30. A r e a C G D = 6 30 A r e a C F D = 1 5 A r e a C F D . E a s y t o s e e A r e a C F D = A r e a D F E = 1 4 A r e a A B C = 135 7 . A r e a E F G D = A r e a s C F D + D F E C G D = ( 135 + 135 135 5 ) 7 = 243 7 = a b . S o A r e a E F G D = 250. AB=60=12*5,~BC=72=12*6,~AC=48=12*4.~~~~~~Area~of~ABC~\frac 1 4*12^2* \sqrt{15*5*7*3}=540\sqrt7.\\ \therefore~AG=2*\dfrac{540\sqrt7}{60}=18\sqrt7.\\ So~ in~AGC~by~Pythagorean ~Theorem,~CG=6.~~But~CF=\frac 1 2*60=30.\\ \therefore~Area~CGD=\frac 6 {30}*Area~CFD=\frac1 5*Area~CFD.\\ Easy~to ~see~Area~CFD=Area~DFE=\frac 1 4*Area~ABC=135\sqrt7.\\ Area~EFGD=Areas~CFD+DFE-CGD=\Big(135+135-\dfrac{135} 5\Big)*\sqrt7=243\sqrt7=a\sqrt b.\\ So~Area~EFGD=\Large~~\color{#D61F06}{250}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...