Area

Geometry Level 3

Determine the area of the quadrilateral having ( 4 , 12 ) , ( 2 , 26 ) , ( 12 , 24 ) (4,12),(2,26),(-12,24) and ( 16 , 2 ) (-16,2) as vertices.


The answer is 300.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

A = 1 2 x 1 x 2 x 3 x n x 1 y 1 y 2 y 3 y n y 1 \large A =\dfrac{1}{2} \begin{vmatrix} x_1 & x_2 & x_3 \cdots & x_{n} & x_1\\ y_1 & y_2 & y_3 \cdots & y_n & y_1 \\ \end{vmatrix}

A = 1 2 4 2 12 16 4 12 26 24 2 12 \large A =\dfrac{1}{2} \begin{vmatrix} 4 & 2 & -12 & -16 & 4\\ 12 & 26 & 24 & 2 & 12 \\ \end{vmatrix}

A = 1 2 [ 4 26 + 2 24 12 2 16 12 ( 12 2 26 12 24 16 + 2 4 ) ] \large A=\dfrac{1}{2}\left[4\cdot26+2\cdot24-12\cdot2-16\cdot12-(12\cdot2-26\cdot12-24\cdot16+2\cdot4)\right]

A = 1 2 [ 104 + 48 24 192 ( 24 312 384 + 8 ) ] \large A=\dfrac{1}{2}[104+48-24-192-(24-312-384+8)]

A = 1 2 ( 64 + 664 ) = 1 2 ( 600 ) = \large A=\dfrac{1}{2}(-64+664)=\dfrac{1}{2}(600)= 300 \boxed{300}

Rocco Dalto
May 31, 2017

Let A : ( 4 , 12 ) , B : ( 2 , 26 ) , C : ( 12 , 24 ) , D : ( 16 , 2 ) A:(4,12), \: B:(2,26), \: C:(-12,24), \: D:(-16,2)

Let E 1 E_{1} be point on A D AD such that C E 1 A D CE_{1} \perp AD and E 2 E_{2} be point on A C AC such that B E 2 A C BE_{2} \perp AC

For A C D : \bigtriangleup {ACD}:

Slope m A D = 1 2 m C E 1 = 2 m_{AD} = \dfrac{1}{2} \implies m_{CE_{1}} = -2 \implies

2 y x = 20 2y - x = 20 y + 2 x = 0 y + 2x = 0

y = 8 x = 4 \implies y = 8 \implies x = -4

C E 1 = 8 5 \therefore CE_{1} = 8\sqrt{5} and A D = 10 5 A r e a A C D = 200 AD = 10\sqrt{5} \implies Area_{\bigtriangleup {ACD}} = 200

For A B C : \bigtriangleup {ABC}:

Slope m A C = 3 4 m B E 2 = 4 3 m_{AC} = -\dfrac{3}{4} \implies m_{BE_{2}} = \dfrac{4}{3} \implies

4 y + 3 x = 60 4y + 3x = 60 3 y 4 x = 70 3y - 4x = 70

y = 18 x = 4 \implies y = 18 \implies x = -4

B E 2 = 10 \therefore BE_{2} = 10 and A C = 20 A r e a A B C = 100 AC = 20 \implies Area_{\bigtriangleup {ABC}} = 100

\therefore The area A A B C D = 300 . A_{ABCD} = \boxed{300}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...