Area

Calculus Level pending

G i v e n t h a t t h e p a r a b o l a y = x 2 + 1 Given\quad that\quad the\quad parabola\quad y={ x }^{ 2 }+1\quad h a s a t a n g e n t a t p o i n t P ( b , b 2 + 1 ) , has\quad a\quad tangent\quad at\quad point\quad P({ b,b }^{ 2 }+1), f i n d t h e a r e a e n c l o s e d b y t h e t a n g e n t a n d p a r a b o l a y = x 2 . \quad find\quad the\quad area\quad enclosed\quad by\quad the\quad tangent\quad and\quad parabola\quad y={ x }^{ 2 }.

1 7 5 \frac { 7 }{ 5 } 4 3 \frac { 4 }{ 3 } 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Justin Tuazon
Oct 18, 2014

L e t f ( x ) = x 2 + 1 L e t g ( x ) = x 2 f ( x ) = 2 x f ( b ) = 2 b S i n c e f ( x ) h a s a t a n g e n t a t p o i n t P ( b , b 2 + 1 ) , t h e e q u a t i o n o f t h e t a n g e n t i s : y b 2 1 = 2 b ( x b ) y = 2 b x 2 b 2 + b 2 + 1 y = 2 b x b 2 + 1 S e t t i n g x 2 = 2 b x b 2 + 1 t o f i n d t h e c o m m o n p o i n t s o f g ( x ) a n d t h e t a n g e n t , x 2 2 b x + b 2 1 = 0 L e t α a n d β b e t h e r o o t s o f x 2 2 b x + b 2 1 = 0 , ( β > α ) T h e r e f o r e : α + β = 2 b , α β = b 2 1 S i n c e , α β ( x α ) ( x β ) d x = ( β α ) 3 6 W e j u s t n e e d t o f i n d β α . ( β α ) 2 = ( α + β ) 2 4 α β S u b s t i t u t i n g α + β = 2 b a n d α β = b 2 1 , ( β α ) 2 = 4 b 2 4 b 2 + 4 = 4 T h e r e f o r e , β α = 2 ( β α > 0 ) α β ( x 2 2 b x + b 2 1 ) d x = 2 3 6 = 8 6 = 4 3 T h e a r e a e n c l o s e d i s 4 3 . Let\quad f(x)={ x }^{ 2 }+1\\ Let\quad g(x)={ x }^{ 2 }\\ \\ f'(x)=2x\\ f'(b)=2b\\ \\ Since\quad f(x)\quad has\quad a\quad tangent\quad at\quad point\quad P(b,{ b }^{ 2 }+1),\\ the\quad equation\quad of\quad the\quad tangent\quad is:\\ y-{ b }^{ 2 }-1=2b(x-b)\\ y=2bx-2{ b }^{ 2 }+{ b }^{ 2 }+1\\ \boxed { y=2bx-{ b }^{ 2 }+1 } \\ \\ Setting\quad { x }^{ 2 }=2bx-{ b }^{ 2 }+1\quad to\quad find\quad the\quad common\quad points\quad of\\ \quad g(x)\quad and\quad the\quad tangent,\\ { x }^{ 2 }-2bx+{ b }^{ 2 }-1=0\\ \\ Let\quad \alpha \quad and\quad \beta \quad be\quad the\quad roots\quad of\quad { x }^{ 2 }-2bx+{ b }^{ 2 }-1=0,\quad (\beta >\alpha )\\ Therefore:\quad \boxed { \alpha +\beta =2b\quad ,\quad \alpha \beta ={ b }^{ 2 }-1 } \\ \\ Since,\quad -\int _{ \alpha }^{ \beta }{ (x-\alpha )(x-\beta )dx= } \frac { { (\beta -\alpha ) }^{ 3 } }{ 6 } \\ We\quad just\quad need\quad to\quad find\quad \beta -\alpha .\\ \\ { (\beta -\alpha ) }^{ 2 }={ (\alpha +\beta ) }^{ 2 }-4\alpha \beta \\ Substituting\quad \alpha +\beta =2b\quad and\quad \alpha \beta ={ b }^{ 2 }-1,\\ { (\beta -\alpha ) }^{ 2 }={ 4b }^{ 2 }-4{ b }^{ 2 }+4=4\\ Therefore,\quad \beta -\alpha =2\quad (\beta -\alpha >0)\\ \\ -\int _{ \alpha }^{ \beta }{ ({ x }^{ 2 } } -2bx+{ b }^{ 2 }-1)dx=\frac { { 2 }^{ 3 } }{ 6 } =\frac { 8 }{ 6 } =\frac { 4 }{ 3 } \\ \\ \boxed { The\quad area\quad enclosed\quad is\quad \frac { 4 }{ 3 } . } \\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...