Areas and Series

Calculus Level 4

Let x < 1 |x| < 1 and e e be Euler's number .

Let m ( x ) = lim n [ ( j = 1 n x j j = 1 n ( j n ) n x n j ) ( j = 1 n ( 1 ) n j ( j n ) n x n j ) j = 1 n ( 1 ) j + 1 x j ) ] m(x) = \lim_{n \rightarrow \infty} \left[\left(\dfrac{\sum_{j = 1}^{n} x^{j}}{\sum_{j = 1}^{n} (\dfrac{j}{n})^n x^{n - j}}\right) * \left(\dfrac{\sum_{j = 1}^{n} (-1)^{n - j} (\dfrac{j}{n})^n x^{n - j})}{\sum_{j = 1}^{n} (-1)^{j + 1} x^{j}}\right)\right] and p ( x ) = m ( x ) p(x) = -m(-x) .

If the area A A of the region bounded by m ( x ) m(x) and p ( x ) p(x) on [ 2 e , e 2 ] [2 - e,e - 2] can be expressed as A = ( α α ) ( e α + ( e β β + e ) ln ( β ( λ e ) ( e β ) e β ) ) A = (\alpha^{\alpha})(e - \alpha + (\dfrac{e - \beta}{\beta + e})\ln(\dfrac{\beta}{(\lambda - e)(e - \beta)^{e - \beta}})) , where α , β \alpha, \beta and λ \lambda are coprime positive integers, find α + β + λ \alpha + \beta + \lambda .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jun 4, 2018

lim n j = 1 n ( j n ) n x n j = j = 0 n 1 ( 1 j n ) n x j = n = 0 ( x e ) n = e e x \lim_{n \rightarrow \infty} \sum_{j = 1}^{n} (\dfrac{j}{n})^n x^{n - j} = \sum_{j = 0}^{n - 1} (1 - \dfrac{j}{n})^{n} x^{j} = \sum_{n = 0}^{\infty} (\dfrac{x}{e})^n = \dfrac{e}{e - x} on x < e |x| < e

lim n j = 1 n x j j = 1 n ( j n ) n x n j = ( x 1 x ) ( e x e ) = x ( e x ) e ( 1 x ) \implies \lim_{n \rightarrow \infty} \dfrac{\sum_{j = 1}^{n} x^{j}}{\sum_{j = 1}^{n} (\dfrac{j}{n})^n x^{n - j}} = (\dfrac{x}{1 - x})(\dfrac{e - x}{e}) = \boxed{\dfrac{x(e - x)}{e(1 - x)}} on x < 1 |x| < 1

n = 1 ( 1 ) n + 1 x n n = 0 ( 1 ) n ( x e ) n = \implies \dfrac{\sum_{n = 1}^{\infty} (-1)^{n + 1} x^n}{\sum_{n = 0}^{\infty} (-1)^n (\dfrac{x}{e})^n} = n = 1 ( x ) n n = 0 ( x e ) n = \dfrac{-\sum_{n = 1}^{\infty} (-x)^n}{\sum_{n = 0}^{\infty} (\dfrac{-x}{e})^n} = x ( e + x ) e ( 1 + x ) \dfrac{x(e + x)}{e(1 + x)} on x < 1 |x| < 1

( j = 1 n ( 1 ) n j ( j n ) n x n j ) j = 1 n ( 1 ) j + 1 x j ) = e ( 1 + x ) x ( e + x ) \implies (\dfrac{\sum_{j = 1}^{n} (-1)^{n - j} (\dfrac{j}{n})^n x^{n - j})}{\sum_{j = 1}^{n} (-1)^{j + 1} x^{j}}) = \boxed{\dfrac{e(1 + x)}{x(e + x)}} on x < 1 |x| < 1

m ( x ) = ( e x ) ( 1 + x ) ( 1 x ) ( e + x ) \implies m(x) = \dfrac{(e - x)(1 + x)}{(1 - x)(e + x)}

p ( x ) = m ( x ) = ( e + x ) ( 1 x ) ( 1 + x ) ( e x ) \implies p(x) = -m(-x) = -\dfrac{(e + x)(1 - x)}{(1 + x)(e - x)}

m ( x ) = 1 + 2 ( e 1 ) x ( 1 x ) ( e + x ) m(x) = 1 + \dfrac{2(e - 1)x}{(1 - x)(e + x)} and p ( x ) = 1 + 2 ( e 1 ) x ( 1 + x ) ( e x ) p(x) = -1 + \dfrac{2(e - 1)x}{(1 + x)(e - x)}

From here using partial fractions we can write m ( x ) m(x) and p ( x ) p(x) as:

m ( x ) = 1 + 2 ( e 1 ) 1 + e ( 1 1 x e e + x m(x) = 1 + \dfrac{2(e - 1)}{1 + e}(\dfrac{1}{1 - x} - \dfrac{e}{e + x} and p ( x ) = 1 + 2 ( e 1 ) 1 + e ( e ( e x ) 2 + 1 ( 1 + x ) 2 ) p(x) = -1 + \dfrac{2(e - 1)}{1 + e}(\dfrac{e}{(e - x)^2} + \dfrac{1}{(1 + x)^2})

2 e e 2 m ( x ) p ( x ) d x = 2 2 e e 2 ( 1 + e 1 1 + e ( 1 1 x e e + x e e x + 1 1 + x ) ) d x = \implies \int_{2 - e}^{e - 2} m(x) - p(x) dx = 2\int_{2 - e}^{e - 2} (1 + \dfrac{e - 1}{1 + e}(\dfrac{1}{1 - x} - \dfrac{e}{e + x} - \dfrac{e}{e - x} + \dfrac{1}{1 + x})) dx =

2 ( x + e 1 1 + e ( ln ( ( 1 + x ) ( e x ) e ( 1 x ) ( e + x ) e ) ) ) 2 e e 2 = 2(x +\dfrac{e - 1}{1 + e}(\ln(\dfrac{(1 + x)(e - x)^e}{(1 - x)(e + x)^e})))|_{2 - e}^{e - 2} = 2 ( 2 e 4 + e 1 1 + e ( ln ( e 1 ( 3 e ) ( e 1 ) e ) ln ( ( 3 e ) ( e 1 ) e e 1 ) ) ) 2(2e - 4 + \dfrac{e - 1}{1 + e}(\ln(\dfrac{e - 1}{(3 - e)(e - 1)^{e}}) - \ln(\dfrac{(3 - e)(e - 1)^{e}}{e - 1})))

= 2 ( 2 e 4 + 2 ( e 1 1 + e ) ln ( 1 ( 3 e ) ( e 1 ) e 1 ) ) = = 2(2e - 4 + 2(\dfrac{e - 1}{1 + e})\ln(\dfrac{1}{(3 - e)(e - 1)^{e - 1}})) = 4 ( e 2 + ( e 1 1 + e ) ln ( 1 ( 3 e ) ( e 1 ) e 1 ) ) = ( α α ) ( e α + ( e β β + e ) ln ( β ( λ e ) ( e β ) e β ) ) α + β + λ = 6 4(e - 2 + (\dfrac{e - 1}{1 + e})\ln(\dfrac{1}{(3 - e)(e - 1)^{e - 1}})) = (\alpha^{\alpha})(e - \alpha + (\dfrac{e - \beta}{\beta + e})\ln(\dfrac{\beta}{(\lambda - e)(e - \beta)^{e - \beta}})) \implies \alpha + \beta + \lambda = \boxed{6} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...