Let ∣ x ∣ < 1 and e be Euler's number .
Let m ( x ) = lim n → ∞ ⎣ ⎢ ⎡ ⎝ ⎜ ⎛ ∑ j = 1 n ( n j ) n x n − j ∑ j = 1 n x j ⎠ ⎟ ⎞ ∗ ⎝ ⎜ ⎛ ∑ j = 1 n ( − 1 ) j + 1 x j ∑ j = 1 n ( − 1 ) n − j ( n j ) n x n − j ) ⎠ ⎟ ⎞ ⎦ ⎥ ⎤ and p ( x ) = − m ( − x ) .
If the area A of the region bounded by m ( x ) and p ( x ) on [ 2 − e , e − 2 ] can be expressed as A = ( α α ) ( e − α + ( β + e e − β ) ln ( ( λ − e ) ( e − β ) e − β β ) ) , where α , β and λ are coprime positive integers, find α + β + λ .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
lim n → ∞ ∑ j = 1 n ( n j ) n x n − j = ∑ j = 0 n − 1 ( 1 − n j ) n x j = ∑ n = 0 ∞ ( e x ) n = e − x e on ∣ x ∣ < e
⟹ lim n → ∞ ∑ j = 1 n ( n j ) n x n − j ∑ j = 1 n x j = ( 1 − x x ) ( e e − x ) = e ( 1 − x ) x ( e − x ) on ∣ x ∣ < 1
⟹ ∑ n = 0 ∞ ( − 1 ) n ( e x ) n ∑ n = 1 ∞ ( − 1 ) n + 1 x n = ∑ n = 0 ∞ ( e − x ) n − ∑ n = 1 ∞ ( − x ) n = e ( 1 + x ) x ( e + x ) on ∣ x ∣ < 1
⟹ ( ∑ j = 1 n ( − 1 ) j + 1 x j ∑ j = 1 n ( − 1 ) n − j ( n j ) n x n − j ) ) = x ( e + x ) e ( 1 + x ) on ∣ x ∣ < 1
⟹ m ( x ) = ( 1 − x ) ( e + x ) ( e − x ) ( 1 + x )
⟹ p ( x ) = − m ( − x ) = − ( 1 + x ) ( e − x ) ( e + x ) ( 1 − x )
m ( x ) = 1 + ( 1 − x ) ( e + x ) 2 ( e − 1 ) x and p ( x ) = − 1 + ( 1 + x ) ( e − x ) 2 ( e − 1 ) x
From here using partial fractions we can write m ( x ) and p ( x ) as:
m ( x ) = 1 + 1 + e 2 ( e − 1 ) ( 1 − x 1 − e + x e and p ( x ) = − 1 + 1 + e 2 ( e − 1 ) ( ( e − x ) 2 e + ( 1 + x ) 2 1 )
⟹ ∫ 2 − e e − 2 m ( x ) − p ( x ) d x = 2 ∫ 2 − e e − 2 ( 1 + 1 + e e − 1 ( 1 − x 1 − e + x e − e − x e + 1 + x 1 ) ) d x =
2 ( x + 1 + e e − 1 ( ln ( ( 1 − x ) ( e + x ) e ( 1 + x ) ( e − x ) e ) ) ) ∣ 2 − e e − 2 = 2 ( 2 e − 4 + 1 + e e − 1 ( ln ( ( 3 − e ) ( e − 1 ) e e − 1 ) − ln ( e − 1 ( 3 − e ) ( e − 1 ) e ) ) )
= 2 ( 2 e − 4 + 2 ( 1 + e e − 1 ) ln ( ( 3 − e ) ( e − 1 ) e − 1 1 ) ) = 4 ( e − 2 + ( 1 + e e − 1 ) ln ( ( 3 − e ) ( e − 1 ) e − 1 1 ) ) = ( α α ) ( e − α + ( β + e e − β ) ln ( ( λ − e ) ( e − β ) e − β β ) ) ⟹ α + β + λ = 6 .