Area and Volume

Calculus Level 3

In the above diagram(diagram is not upto scale),there is a plate with one edge as straight line along y-axis and other side as random curve. A y A_{y} is defined as the area of the sheet from y = 0 to y (red region in the diagram). V y V_{y} is defined as the volume of the solid formed ,from y = 0 to y , when this sheet is rotated about y-axis.If

V y V_{y} = A y A_{y} + A y 2 A^{2}_{y} for any variable y .

Find V y A y \frac{V_{y}}{A_{y}} at y = π 2 \frac{\pi}{2}

2.297 1.859 1.154 2.635

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
May 27, 2017

Let A y = 0 y f ( y ) d y A_{y} = \large \int_0^{y} f(y) \, dy and V y = 0 y π f ( y ) 2 d y V_{y} = \large \int_0^{y} \pi \cdot f(y)^2 \, dy . If V y = A y + A y 2 V_y = A_y + A_{y}^2 , then let us solve for the function f ( y ) f(y) by differentiating both sides with respect to y : y:

y V y = y ( A y + A y 2 ) π f ( y ) 2 = f ( y ) + 2 f ( y ) 0 y f ( y ) d y \frac{\partial}{\partial y} \cdot V_y = \frac{\partial}{\partial y} \cdot (A_y + A_{y}^2) \Rightarrow \pi f(y)^2 = f(y) + 2f(y) \cdot \large \int_0^{y} f(y) \, dy ;

or π f ( y ) = 1 + 2 0 y f ( y ) d y \pi f(y) = 1 + 2 \cdot \large \int_0^{y} f(y) \, dy ;

or π f ( y ) 1 2 = 0 y f ( y ) d y \frac{\pi f(y) - 1}{2} = \large \int_0^{y} f(y) \, dy (i); with the initial condition f ( 0 ) = 1 π f(0) = \frac{1}{\pi} at y = 0. y = 0.

Now differentiating (i) with respect to y y yields π 2 f ( y ) = f ( y ) f ( y ) f ( y ) = 2 π l n f ( y ) = 2 y π + C \frac{\pi}{2} f'(y) = f(y) \Rightarrow \frac{f'(y)}{f(y)} = \frac{2}{\pi} \Rightarrow ln|f(y)| = \frac{2y}{\pi} + C

and the initial condition f ( 0 ) = 1 π C = l n ( 1 π ) f(0) = \frac{1}{\pi} \Rightarrow C = ln(\frac{1}{\pi}) , which finally results in f ( y ) = 1 π e 2 y π f(y) = \frac{1}{\pi} e^{\frac{2y}{\pi}} .

We now solve for V y A y \frac{V_y}{A_y} at y = π 2 y = \frac{\pi}{2} , or:

V y A y = A y + A y 2 A y = 1 + A y = 1 + 0 π 2 1 π e 2 y π d y \frac{V_y}{A_y} = \frac{A_y + A_{y}^2}{A_y} = 1 + A_y = 1 + \large \int_0^{\frac{\pi}{2}} \frac{1}{\pi} e^{\frac{2y}{\pi}} \, dy ;

or 1 + 1 2 e 2 y π 1 + \frac{1}{2} e^{\frac{2y}{\pi}} from 0 y π 2 0 \le y \le \frac{\pi}{2} ;

or e + 1 2 1.859 \boxed{\frac{e + 1}{2}} \approx 1.859

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...