Area Between Bernoulli's Lemniscate And a Lissajous Curve

Calculus Level 3

Find the area between the curves given by:

{ x = cos t 1 + sin 2 t y = sin t cos t 1 + sin 2 t and { x = sin t y = 1 2 sin 2 t \begin{cases} x=\dfrac{\cos{t}}{1+\sin^2{t}} \\ y=\dfrac{\sin{t}\cos{t}}{1+\sin^2{t}} \end{cases} \quad \text{and} \quad \begin{cases} x=\sin{t} \\ y=\dfrac{1}{2}\sin{2t} \end{cases}

for 0 < t < 2 π 0<t<2\pi in both cases.

1 2 \frac{1}{2} 1 3 \frac{1}{3} π 6 \frac{\pi}{6} π 8 \frac{\pi}{8}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Carsten Meyer
Apr 15, 2021

We calculate the area using Stokes' Formula:

Let c : D R R 3 , c ( t ) = ( c x ( t ) , c y ( t ) , 0 ) T c:D\subset\mathbb{R}\rightarrow\mathbb{R^3},\quad \vec{c}(t)=(c_x(t),\:c_y(t),\:0)^T be a piece-wise smooth closed curve that surrounds an area exactly once. Then A = 1 2 D < r ( t ) × r ( 1 ) ( t ) ; e z > d t A=\frac{1}{2}\left|\int_D \left<\vec{r}(t)\times \vec{r}^{(1)}(t);\:\vec{e}_z\right>\:dt\right|


Let's call A A the area between the given curves r 1 , 2 ( t ) \vec{r}_{1,2}(t) . Notice they are symmetric to both x , y x,\:y- axes, so A = 4 A 1 A=4A_1 , where A 1 A_1 is the area between both curves in the first quadrant. If we first walk along r 1 ( t ) \vec{r}_1(t) and then along r 2 ( t ) \vec{r}_2(t) for t [ 0 , π 2 ] t\in [0,\:\frac{\pi}{2}] each, we surround A 1 A_1 exactly once clock-wise and may use Stokes' Formula: A = 4 A 1 = 2 k = 1 2 0 π 2 < r k ( t ) × r k ( 1 ) ( t ) ; e z > d t A=4A_1=2\left|\sum_{k=1}^2 \int_0^{\frac{\pi}{2}}\left< \vec{r_k}(t)\times\vec{r}_k^{(1)}(t);\:\vec{e}_z\right>\:dt \right| Let's calculate the derivatives for both curves using the short-hands s k : = sin ( k t ) , c k : = cos ( k t ) s_k:=\sin(kt),\:c_k:=\cos(kt) and s 2 = 2 s 1 c 1 s_2=2s_1c_1 : r 1 ( t ) = 1 1 + s 1 2 ( c 1 s 1 c 1 0 ) , r 1 ( 1 ) ( t ) = 2 s 1 c 1 1 + s 1 2 r 1 ( t ) + 1 1 + s 1 2 ( s 1 c 1 2 s 1 2 0 ) r 2 ( t ) = ( s 1 s 1 c 1 0 ) , r 2 ( 1 ) ( t ) = ( c 1 c 1 2 s 1 2 0 ) \begin{aligned} \vec{r}_1(t) &= \frac{1}{1+s_1^2}\begin{pmatrix} c_1\\s_1c_1\\0 \end{pmatrix}, & \vec{r}^{(1)}_1(t)&=-\frac{2s_1c_1}{1+s_1^2}\vec{r}_1(t)+\frac{1}{1+s_1^2}\begin{pmatrix} -s_1\\c_1^2-s_1^2\\0 \end{pmatrix} &&&&& \vec{r}_2(t)&= \begin{pmatrix} s_1\\s_1c_1\\0 \end{pmatrix},& \vec{r}_2^{(1)}(t)&=\begin{pmatrix} c_1\\c_1^2-s_1^2\\0 \end{pmatrix} \end{aligned} Now we can tackle the vector products. Recall a × a = 0 \vec{a}\times \vec{a}=0 : r 1 ( t ) × r 1 ( 1 ) ( t ) = 0 + 1 ( 1 + s 1 2 ) 2 ( c 1 ( c 1 2 s 1 2 ) + s 1 c 1 2 ) e z = c 1 3 ( 1 + s 1 2 ) 2 e z r 2 ( t ) × r 2 ( 1 ) ( t ) = ( s 1 ( c 1 2 s 1 2 ) s 1 c 1 2 ) e z = s 1 3 e z \begin{aligned} \vec{r}_1(t)\times\vec{r}_1^{(1)}(t) &= \vec{0}+\frac{1}{(1+s_1^2)^2}\cdot (c_1(c_1^2-s_1^2)+s_1c_1^2)\vec{e}_z=\frac{c_1^3}{(1+s_1^2)^2}\vec{e}_z &&&&& \vec{r}_2(t)\times\vec{r}_2^{(1)}(t) &=(s_1(c_1^2-s_1^2) -s_1c_1^2)\vec{e}_z=-s_1^3\vec{e}_z \end{aligned} Now we can finally calculate the area. In ( ) (*) use the substitutions u : = s 1 u:=s_1 for the first part and u : = c 1 u:=c_1 for the second part: A = 2 0 π 2 c 1 3 ( 1 + s 1 2 ) 2 s 1 3 d t = ( ) 2 0 1 1 u 2 ( 1 + u 2 ) 2 ( 1 u 2 ) d u = 2 u 1 + u 2 u + u 3 3 0 1 = 2 1 6 = 1 3 \begin{aligned} A&=2\left| \int_0^{\frac{\pi}{2}}\frac{c_1^3}{(1+s_1^2)^2}-s_1^3\:dt \right|\underset{(*)}{=}2\left| \int_0^1 \frac{1-u^2}{(1+u^2)^2}-(1-u^2)\:du \right|=2\left| \frac{u}{1+u^2}-u+\frac{u^3}{3} \right|_0^1=2\cdot\left|-\frac{1}{6}\right|=\boxed{\frac{1}{3}}\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...