Area between Conic and a Curve

Level 2

Find the conic a x 2 + + b y 2 + c x + d y = 1 ax^2 + + by^2 + cx + dy = -1 that intersects the curve f ( x ) = 4 5 ( x 1 x 2 ) f(x) = \dfrac{4}{5}(\sqrt{|x|} - \sqrt{1 - x^2}) at the five points above.

Find the region bounded by the conic and the curve f ( x ) = 4 5 ( x 1 x 2 ) f(x) = \dfrac{4}{5}(\sqrt{|x|} - \sqrt{1 - x^2}) to six decimal places.


The answer is 0.300534.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Mar 24, 2018

To show the conic is a hyperbola.

Using the point ( 1 , 4 5 ) (1,\dfrac{4}{5}) we obtain (1): a + 16 25 b + c + 4 5 d = 1 a + \dfrac{16}{25}b + c + \dfrac{4}{5}d = -1

Using the point ( 0 , 4 5 ) (0,\dfrac{-4}{5}) we obtain (2): 16 25 b 4 5 d = 1 \dfrac{16}{25}b - \dfrac{4}{5}d = -1

Using the point ( 5 1 2 , 0 ) (\dfrac{\sqrt{5} - 1}{2},0) we obtain (3): ( 5 1 2 ) 2 a 5 1 2 c = 1 (\dfrac{\sqrt{5} -1}{2})^2a - \dfrac{\sqrt{5} - 1}{2}c = -1

Using the point ( 5 1 2 , 0 ) (-\dfrac{\sqrt{5} - 1}{2},0) we obtain (4): ( 5 1 2 ) 2 a 5 1 2 c = 1 (\dfrac{\sqrt{5} -1}{2})^2a - \dfrac{\sqrt{5} - 1}{2}c = -1

Using the point ( 1 , 4 5 ) (-1,\dfrac{4}{5}) we obtain (5): a + 16 25 b c + 4 5 d = 1 a + \dfrac{16}{25}b - c + \dfrac{4}{5}d = -1

(3) and (4) a = ( 2 5 1 ) 2 \implies a = -(\dfrac{2}{\sqrt{5} - 1})^2 and c = 0 c = 0 \implies

16 25 b + 4 5 d = 2 5 1 \dfrac{16}{25}b + \dfrac{4}{5}d = \dfrac{2}{\sqrt{5} - 1}

16 25 b 4 5 d = 1 \dfrac{16}{25}b - \dfrac{4}{5}d = -1

b = 25 32 ( 3 5 5 1 ) = 25 32 ( 5 1 2 ) \implies b = \dfrac{25}{32}(\dfrac{3 - \sqrt{5}}{\sqrt{5} - 1}) = \dfrac{25}{32}(\dfrac{\sqrt{5} - 1}{2}) and d = 5 8 ( 2 5 1 ) 2 d = \dfrac{5}{8}(\dfrac{2}{\sqrt{5} - 1})^2

Letting x 0 = 5 1 2 a = 1 x 0 2 , b = 25 32 x 0 , c = 0 x_{0} = \dfrac{\sqrt{5} - 1}{2} \implies a = \dfrac{-1}{x_{0}^2}, b = \dfrac{25}{32}x_{0}, c = 0 and d = 5 8 ( 1 x 0 2 ) d = \dfrac{5}{8}(\dfrac{1}{x_{0}^2}) \implies

25 x 0 3 y 2 32 x 2 + 20 y = 32 x 0 2 25x_{0}^3y^2 - 32x^2 + 20y = -32x_{0}^2 \implies 25 x 0 3 ( y + 2 5 x 0 3 ) 2 32 x 2 = 4 32 x 0 5 x 3 \boxed{25x_{0}^3(y + \dfrac{2}{5x_{0}^3})^2 - 32x^2 = \dfrac{4 - 32x_{0}^5}{x^3}} which is a hyperbola.

To find the desired area we need to solve for y = g ( x ) y = g(x) .

Solving for y y we obtain: y = ( 2 5 x 0 3 ) ( 8 x 0 3 x 2 + 1 8 x 0 5 1 ) y = (\dfrac{2}{5x_{0}^3})(\sqrt{8x_{0}^3x^2 + 1 - 8x_{0}^5} - 1) , where y > = 4 5 y >= \dfrac{-4}{5} .

Using the symmetry about the y y axis let y = g ( x ) y = g(x) and f ( x ) = 4 5 ( x 1 x 2 ) f(x) = \dfrac{4}{5}(\sqrt{x} - \sqrt{1 - x^2}) .

Let A 1 = x 0 1 g ( x ) f ( x ) d x A_{1} = \int_{x_{0}}^{1} g(x) - f(x) dx and A 2 = 0 x 0 f ( x ) g ( x ) d x A_{2} = \int_{0}^{x_{0}} f(x) - g(x) dx so that the desired area A = 2 ( A 1 + A 2 ) A = 2(A_{1} + A_{2}) .

For A 1 A_{1} :

For A = x 0 1 g ( x ) A^{*} = \int_{x_{0}}^{1} g(x) :

Let 8 x 0 3 x = 1 8 x 0 5 tan ( θ ) d x = 1 8 x 0 5 8 x 0 3 \sqrt{8x_{0}^3} x = \sqrt{1 - 8x_{0}^5}\tan(\theta) \implies dx = \sqrt{\dfrac{1 - 8x_{0}^5}{8x_{0}^3}}

A = x 0 1 g ( x ) d x = \implies A^{*} = \int_{x_{0}}^{1} g(x) dx = 2 5 x 0 3 ( 1 8 x 0 5 8 x 0 3 θ 1 θ 2 sec 3 ( θ ) d θ x 0 1 d x ) \dfrac{2}{5x_{0}^3} * (\dfrac{1 - 8x_{0}^5}{\sqrt{8x_{0}^3}}\int_{\theta_{1}}^{\theta_{2}} \sec^3(\theta) d\theta - \int_{x_{0}}^{1} dx)

Using integration by parts and evaluating the integral and simplifying we obtain:

A = 2 5 x 0 3 ( 8 x 0 3 + 1 8 x 0 5 2 + 1 2 x 0 1 + ( 1 8 x 0 5 2 8 x 0 3 ) ln 8 x 0 3 + 1 8 x 0 5 + 8 x 0 3 1 + 8 x 0 5 ) A^{*} = \dfrac{2}{5x_{0}^3}(\dfrac{\sqrt{8x_{0}^3 + 1 - 8x_{0}^5}}{2} + \dfrac{1}{2}x_{0} - 1 + (\dfrac{1 - 8x_{0}^5}{2\sqrt{8x_{0}^3}}) * \ln|\dfrac{\sqrt{8x_{0}^3 + 1 - 8x_{0}^5} + \sqrt{8x_{0}^3}}{1 + \sqrt{8x_{0}^5}}|)

For A = 4 5 x 0 1 ( 1 x 2 x ) d x A^{**} = \dfrac{4}{5} \int_{x_{0}}^{1} (\sqrt{1 - x^2} - \sqrt{x}) dx Let x = sin ( θ ) d x = cos ( θ ) x = \sin(\theta) \implies dx = \cos(\theta) \implies

A = 4 5 ( π 4 1 2 arcsin ( x 0 ) 1 2 x 0 1 x 0 2 + 2 3 x 0 3 2 2 3 ) A^{**} = \dfrac{4}{5}(\dfrac{\pi}{4} - \dfrac{1}{2}\arcsin(x_{0}) - \dfrac{1}{2}x_{0}\sqrt{1 - x_{0}^2} + \dfrac{2}{3}x_{0}^{\dfrac{3}{2}} - \dfrac{2}{3})

A 1 = A + A . 043741 A_{1} = A^{*} + A^{**} \approx \boxed{.043741}

Similarly For A 2 = = 0 x 0 f ( x ) g ( x ) d x A_{2} = = \int_{0}^{x_{0}} f(x) - g(x) dx we obtain:

A 2 = 4 5 ( 2 3 x 0 3 2 1 2 arcsin ( x 0 ) 1 2 x 0 1 x 2 ) 2 5 x 0 3 ( x 0 2 + ( 1 8 x 0 5 2 8 x 0 3 ) ln 1 + 8 x 0 5 1 8 x 0 5 ) . 106526 A_{2} = \dfrac{4}{5}(\dfrac{2}{3}x_{0}^{\dfrac{3}{2}} - \dfrac{1}{2}\arcsin(x_{0}) - \dfrac{1}{2}x_{0}\sqrt{1 - x^2}) - \dfrac{2}{5x_{0}^3}(\dfrac{-x_{0}}{2} + (\dfrac{1 - 8x_{0}^5}{2\sqrt{8x_{0}^3}})\ln|\dfrac{1 + \sqrt{8x_{0}^5}}{\sqrt{1 - 8x_{0}^5}}|) \approx \boxed{.106526}

\therefore The desired area is A = 2 ( A 1 + A 2 ) = . 300534 A = 2(A_{1} + A_{2}) = \boxed{.300534} .

Note: Using the conic a x 2 + b x y + c y 2 + d x + e y = 1 ax^2 + bxy + cy^2 + dx + ey = - 1 with the points above gives us:

a + 4 5 b + 16 25 c + d + 4 5 e = 1 a + \dfrac{4}{5}b + \dfrac{16}{25}c + d + \dfrac{4}{5}e = -1

a 4 5 b + 16 25 c d + 4 5 e = 1 a - \dfrac{4}{5}b + \dfrac{16}{25}c - d + \dfrac{4}{5}e = -1

( 5 1 2 ) 2 a + 5 1 2 d = 1 (\dfrac{\sqrt{5} - 1}{2})^2a + \dfrac{\sqrt{5} - 1}{2}d = -1

( 5 1 2 ) 2 a 5 1 2 d = 1 (\dfrac{\sqrt{5} - 1}{2})^2a - \dfrac{\sqrt{5} - 1}{2}d = -1

16 25 c 4 5 e = 1 \dfrac{16}{25}c - \dfrac{4}{5}e = - 1

Again, letting x 0 = 5 1 2 x_{0} = \dfrac{\sqrt{5} - 1}{2} and solving the system we obtain:

a = 1 x 0 2 , d = 0 , c = 25 32 x 0 , e = 5 8 ( 1 x 0 2 ) a = \dfrac{-1}{x_{0}^2}, d = 0, c = \dfrac{25}{32} x_{0}, e = \dfrac{5}{8}(\dfrac{1}{x_{0}^2}) and b = 0 b = 0 which results in the same hyperbola we had above with a zero coefficient for the x y xy term.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...