Area Bonanza 2

Calculus Level 4

Let x < 1 |x| < 1 .

If f ( x ) = n = 1 n 3 x n f(x) = \sum_{n = 1}^{\infty} n^3 x^n and g ( x ) = n = 1 n 2 x n g(x) = \sum_{n = 1}^{\infty} n^2 x^n and the area A A of the region bounded by f f and g g on [ 1 2 , 0 ] [\dfrac{-1}{2},0] can be expressed as A = a b b ln ( b c ) c A = \dfrac{a}{b^b} - \ln(\dfrac{b}{c})^c , where a , b a,b and c c are coprime positive integers, find a + b + c a + b + c .


The answer is 28.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
May 7, 2018

Let x < 1 |x| < 1 .

n = 1 n x n = j = 1 n = j x n = 1 1 x j = 1 x j = 1 1 x ( x ) 1 1 x = x ( 1 x ) 2 \sum_{n = 1}^{\infty} n x^n = \sum_{j = 1}^{\infty} \sum_{n = j}^{\infty} x^n = \dfrac{1}{1 - x}\sum_{j = 1}^{\infty} x^{j} = \dfrac{1}{1 - x}(x)\dfrac{1}{1 - x} = \dfrac{x}{(1 - x)^2}

( x x 1 ) ( 1 x ) ( x x 1 ) = x ( x 1 ) 2 . (\dfrac{x}{x - 1})(\dfrac{1}{x})(\dfrac{x}{x - 1}) = \dfrac{x}{(x - 1)^2}.

g ( x ) = n = 1 n 2 x n = j = 1 ( n = j n x n ) = g(x) = \sum_{n = 1}^{\infty} n^2 x^n = \sum_{j = 1}^{\infty} (\sum_{n = j}^{\infty} n x^n) = 1 1 x j = 1 ( j x j ) + x ( 1 x ) 2 j = 1 x j = \dfrac{1}{1 - x}\sum_{j = 1}^{\infty} (j x^j) + \dfrac{x}{(1 - x)^2}\sum_{j = 1}^{\infty} x^j =

( 1 1 x ) ( x ( 1 x ) 2 ) + ( x ( 1 x ) 2 ) ( x 1 x ) = (\dfrac{1}{1 - x})(\dfrac{x}{(1 - x)^2}) + (\dfrac{x}{(1 - x)^2})(\dfrac{x}{1 - x}) = x 2 + x ( 1 x ) 3 \dfrac{x^2 + x}{(1 - x)^3} .

f ( x ) = n = 1 n 3 x n = j = 1 n = j n 2 x n = f(x) = \sum_{n = 1}^{\infty} n^3 x^n = \sum_{j = 1}^{\infty} \sum_{n = j}^{\infty} n^2 x^{n} = 1 1 x j = 1 j 2 x j + 2 x ( 1 x ) 2 j = 1 j x j + x 2 + x ( 1 x ) 3 j = 1 x j = ( 1 1 x ) ( x 2 + x ( 1 x ) 3 ) + \dfrac{1}{1 - x}\sum_{j = 1}^{\infty} j^2 x^j + \dfrac{2x}{(1 - x)^2}\sum_{j = 1}^{\infty} j x^j + \dfrac{x^2 + x}{(1 - x)^3}\sum_{j = 1}^{\infty} x^j = (\dfrac{1}{1 - x})(\dfrac{x^2 + x}{(1 - x)^3}) + ( 2 x ( 1 x ) 2 ) ( x ( 1 x ) 2 ) + ( x 2 + x ( 1 x ) 3 ) ( x 1 x ) = (\dfrac{2x}{(1 - x)^2})(\dfrac{x}{(1 - x)^2}) + (\dfrac{x^2 + x}{(1 - x)^3})(\dfrac{x}{1 - x}) = x 3 + 4 x 2 + x ( 1 x ) 4 \dfrac{x^3 + 4x^2 + x}{(1 - x)^4} .

Let u = 1 x d u = d x 1 2 0 f ( x ) d x = 1 3 2 u 3 7 u 2 + 12 u 6 u 4 d u = 1 3 2 1 u 7 u 2 + 12 u 3 6 u 4 d u = u = 1 -x \implies du = -dx \implies \int_{\frac{-1}{2}}^{0} f(x) dx = -\int_{1}^{\frac{3}{2}} \dfrac{u^3 - 7u^2 + 12u - 6}{u^4} du = -\int_{1}^{\frac{3}{2}} \dfrac{1}{u} - 7u^{-2} + 12u^{-3} - 6u^{-4} du =

( ln ( u ) + 7 u 6 u 2 + 2 u 3 ) 1 3 2 = -(\ln(u) + \dfrac{7}{u} - \dfrac{6}{u^2} + \dfrac{2}{u^3})|_{1}^{\frac{3}{2}} = ( ln ( 3 2 ) 11 27 ) = 11 27 ln ( 3 2 ) -(\ln(\dfrac{3}{2}) - \dfrac{11}{27}) = \dfrac{11}{27} - \ln(\dfrac{3}{2})

and,

1 2 0 g ( x ) d x = 1 3 2 u 2 3 u + 2 u 3 d u = \int_{\frac{-1}{2}}^{0} g(x) dx = \int_{1}^{\frac{3}{2}} \dfrac{u^2 - 3u + 2}{u^3} du = 1 3 2 1 u 3 u 2 + 2 u 3 d u = \int_{1}^{\frac{3}{2}} \dfrac{1}{u} - 3u^{-2} + 2u^{-3} du = ( ln ( u ) + 3 u 1 u 2 ) 1 3 2 = ln ( 3 2 ) 4 9 (\ln(u) + \dfrac{3}{u} - \dfrac{1}{u^2})|_{1}^{\frac{3}{2}} = \ln(\dfrac{3}{2}) - \dfrac{4}{9} \implies

1 2 0 f ( x ) g ( x ) d x = 23 27 ln ( 9 4 ) = \int_{\frac{-1}{2}}^{0} f(x) - g(x) dx = \dfrac{23}{27} - \ln(\dfrac{9}{4}) = 23 3 3 ln ( 3 2 ) 2 = a b b ln ( b c ) c a + b + c = 28 \dfrac{23}{3^3} - \ln(\dfrac{3}{2})^2 = \dfrac{a}{b^b} - \ln(\dfrac{b}{c})^c \implies a + b + c = \boxed{28} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...