Area Bonanza !

Level pending

Two parabolas are tangent to the circle x 2 + y 2 = 1 x^2 + y^2 = 1 at ( 3 2 , 1 2 ) (\dfrac{\sqrt{3}}{2},\dfrac{1}{2}) and ( 3 2 , 1 2 ) (-\dfrac{\sqrt{3}}{2},\dfrac{1}{2}) and ( 1 2 , 1 2 ) (-\dfrac{1}{\sqrt{2}},-\dfrac{1}{\sqrt{2}}) and ( 1 2 , 1 2 ) (\dfrac{1}{\sqrt{2}},-\dfrac{1}{\sqrt{2}}) as shown above.

If the area A A of the blue and red regions bounded by the parabolas and the circle above can be represented as A = 1 a a b ( b 2 b + a c d π ) A = \dfrac{1}{a^a * b}(b^2\sqrt{b} + a * c - d\pi) , where a , b , c a,b,c and d d are coprime positive integers, find a + b + c + d a + b + c + d .


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 6, 2019

m O A = 1 3 m = 3 m_{OA} = \dfrac{1}{\sqrt{3}} \implies m_{\perp} = -\sqrt{3}

m O B = 1 3 m = 3 m_{OB} = -\dfrac{1}{\sqrt{3}} \implies m^{*}_{\perp} = \sqrt{3}

Let y = a x 2 + b x + c d y d x = 2 a x + b y = ax^2 + bx + c \implies \dfrac{dy}{dx} = 2ax + b

d y d x ( x = 3 2 ) = 3 a + b = 3 \implies \dfrac{dy}{dx}|_{(x = \dfrac{\sqrt{3}}{2})} = \sqrt{3}a + b = -\sqrt{3}

and

d y d x ( x = 3 2 ) = 3 a + b = 3 \dfrac{dy}{dx}|_{(x = \dfrac{-\sqrt{3}}{2})} = -\sqrt{3}a + b = \sqrt{3}

Solving the above system we obtain a = 1 a = -1 and b = 0 b = 0 and using A ( 3 2 , 1 2 ) A(\dfrac{\sqrt{3}}{2},\dfrac{1}{2}) \implies

1 2 = 1 ( 3 2 ) 2 + c c = 5 4 \dfrac{1}{2} = -1(\dfrac{\sqrt{3}}{2})^2 + c \implies c = \dfrac{5}{4} \implies y = 5 4 x 2 y = \dfrac{5}{4} - x^2

and for the portion of the circle we have y = 1 x 2 y = \sqrt{1 - x^2}

A = 2 0 3 2 ( ( 5 4 x 2 ) 1 x 2 ) d x \implies A = 2\displaystyle\int_{0}^{\dfrac{\sqrt{3}}{2}} ((\dfrac{5}{4} - x^2) - \sqrt{1 - x^2}) dx

= 2 ( 3 2 0 3 2 1 x 2 d x ) = 2(\dfrac{\sqrt{3}}{2} - \displaystyle\int_{0}^{\dfrac{\sqrt{3}}{2}} \sqrt{1 - x^2} dx)

Letting x = sin ( θ ) d x = cos ( θ ) d θ x = \sin(\theta) \implies dx = \cos(\theta) d\theta \implies

0 3 2 1 x 2 d x = 0 π 3 ( 1 + cos ( 2 θ ) ) d θ = \displaystyle\int_{0}^{\dfrac{\sqrt{3}}{2}} \sqrt{1 - x^2} dx = \displaystyle\int_{0}^{\dfrac{\pi}{3}} (1 + \cos(2\theta)) d\theta = 1 2 ( θ + 1 2 sin ( 2 θ ) ) 0 π 3 = \dfrac{1}{2}(\theta + \dfrac{1}{2}\sin(2\theta))|_{0}^{\dfrac{\pi}{3}} =

1 2 ( π 3 + 3 4 ) \dfrac{1}{2}(\dfrac{\pi}{3} + \dfrac{\sqrt{3}}{4})

A 1 = 3 ( π 3 + 3 4 ) = 3 3 4 π 3 \implies A_{1} = \sqrt{3} - (\dfrac{\pi}{3} + \dfrac{\sqrt{3}}{4}) = \boxed{\dfrac{3\sqrt{3}}{4} - \dfrac{\pi}{3}}

m O D = 1 m = 1 m_{OD} = 1 \implies m_\perp = -1

m O C = 1 m = 1 m_{OC} = -1 \implies m^*_\perp = 1

Let y = a x 2 + b x + c d y d x = 2 a x + b y = a^{*} x^2 + b^{*} x + c \implies \dfrac{dy}{dx} = 2a^{*} x + b^{*}

d y d x ( x = 1 2 = 2 a + b = 1 \dfrac{dy}{dx}|_{(x = -\dfrac{1}{\sqrt{2}}} = -\sqrt{2}a^{*} + b^{*} = -1

and

d y d x ( x = 1 2 = 2 a + b = 1 \dfrac{dy}{dx}|_{(x = \dfrac{1}{\sqrt{2}}} = \sqrt{2}a^{*} + b^{*} = 1

Solving the above system we obtain:

a = 1 2 a^{*} = \dfrac{1}{\sqrt{2}} and b = 0 b^{*} = 0 and using ( 1 2 , 1 2 ) (\dfrac{1}{\sqrt{2}},-\dfrac{1}{\sqrt{2}}) we obtain c = 3 2 2 c^{*} = \dfrac{-3}{2\sqrt{2}}

y = 1 2 x 2 3 2 2 \implies y = \dfrac{1}{\sqrt{2}}x^2 - \dfrac{3}{2\sqrt{2}} and for the portion of the circle we have y = 1 x 2 y = -\sqrt{1 - x^2} .

A 2 = 2 0 1 2 ( 3 2 2 1 2 x 2 1 x 2 ) d x \implies A_{2} = 2\displaystyle\int_{0}^{\dfrac{1}{\sqrt{2}}} (\dfrac{3}{2\sqrt{2}} - \dfrac{1}{\sqrt{2}}x^2 - \sqrt{1 - x^2}) dx

Letting x = sin ( θ ) d x = cos ( θ ) d θ x = \sin(\theta) \implies dx = \cos(\theta) d\theta \implies A 2 = 2 ( 2 3 1 2 0 π 4 A_{2} = 2(\dfrac{2}{3} - \dfrac{1}{2}\displaystyle\int_{0}^{\dfrac{\pi}{4}} ( 1 + cos ( 2 θ ) ) d θ ) (1 + \cos(2\theta)) d\theta)

= 2 ( 2 3 1 2 ( π 4 + 1 2 ) ) = 5 6 π 4 = 2(\dfrac{2}{3} - \dfrac{1}{2}(\dfrac{\pi}{4} + \dfrac{1}{2})) = \boxed{\dfrac{5}{6} - \dfrac{\pi}{4}}

A = A 1 + A 2 = 1 12 ( 9 3 + 10 7 π ) = 1 2 2 3 ( 3 2 3 + 2 5 7 π ) \implies A = A_{1} + A_{2} = \dfrac{1}{12}(9\sqrt{3} + 10 - 7\pi) = \dfrac{1}{2^2 * 3}(3^2\sqrt{3} + 2 * 5 - 7\pi)

= 1 a a b ( b 2 b + a c d π ) a + b + c + d = 17 = \dfrac{1}{a^a * b}(b^2\sqrt{b} + a * c - d\pi) \implies a + b + c + d = \boxed{17}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...