Area Bonanza

Calculus Level 4

If f ( x ) = n = 1 n x n f(x) = \sum_{n = 1}^{\infty} n x^n on ( 0 x < 1 ) (0 \leq x < 1) and g ( x ) = n = 1 x n n g(x) = \sum_{n = 1}^{\infty} \dfrac{x^n}{n} on ( 0 x < 1 ) (0 \leq x < 1) , find the area bounded by f f and g g on [ 0 , 1 2 ] [0,\dfrac{1}{2}] to four decimal places.


The answer is 0.1534.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
May 7, 2018

Let g ( x ) = n = 1 x n n g(x) = \sum_{n = 1}^{\infty} \dfrac{x^n}{n} on ( 0 x < 1 ) (0 \leq x < 1)

d d x ( g ( x ) ) = n = 1 x n 1 = 1 1 x g ( x ) = 0 x 1 1 x d x = ln ( 1 1 x ) \implies \dfrac{d}{dx}(g(x)) = \sum_{n = 1}^{\infty} x^{n - 1} = \dfrac{1}{1 - x} \implies g(x) = \int_{0}^{x} \dfrac{1}{1 - x} dx = \ln(\dfrac{1}{1 - x}) .

For 0 1 2 ln ( 1 1 x ) d x \int_{0}^{\frac{1}{2}} \ln(\dfrac{1}{1 - x}) dx

Let u = ln ( 1 1 x ) d u = d x 1 x u = \ln(\dfrac{1}{1 - x}) \implies du = \dfrac{dx}{1 - x} and d v = d x v = x dv = dx \implies v = x \implies

0 1 2 ln ( 1 1 x ) d x = ( x ln ( 1 1 x ) + ln ( 1 x ) + x ) 0 1 2 = 1 2 ( 1 ln ( 2 ) ) . \int_{0}^{\frac{1}{2}} \ln(\dfrac{1}{1 - x}) dx = (x\ln(\dfrac{1}{1 - x}) + \ln(1 - x) + x)|_{0}^{\frac{1}{2}} = \dfrac{1}{2}(1 - \ln(2)).

Let ( 0 x < 1 ) (0 \leq x < 1) .

n = 1 n x n = j = 1 n = j x n = 1 1 x j = 1 x j = 1 1 x ( x ) 1 1 x = x ( 1 x ) 2 = f ( x ) \sum_{n = 1}^{\infty} n x^n = \sum_{j = 1}^{\infty} \sum_{n = j}^{\infty} x^n = \dfrac{1}{1 - x}\sum_{j = 1}^{\infty} x^{j} = \dfrac{1}{1 - x}(x)\dfrac{1}{1 - x} = \dfrac{x}{(1 - x)^2} = f(x)

Let u = 1 x d u = d x 0 1 2 x ( 1 x ) 2 d x = 1 1 2 1 u 1 u 2 d u = ( ln ( u ) + 1 u ) 1 1 2 = ln ( 1 2 ) + 1 u = 1 - x \implies du = -dx \implies \int_{0}^{\frac{1}{2}} \dfrac{x}{(1 - x)^2} dx = \int_{1}^{\frac{1}{2}} \dfrac{1}{u} - \dfrac{1}{u^2} du = (\ln(u) + \dfrac{1}{u})|_{1}^{\frac{1}{2}} = \ln(\dfrac{1}{2}) + 1 .

0 1 2 f ( x ) g ( x ) d x = 1 2 ( 1 ln ( 2 ) ) 0.1534 \therefore \int_{0}^{\frac{1}{2}} f(x) - g(x) dx = \dfrac{1}{2}(1 - \ln(2)) \approx \boxed{0.1534} .

Note: 0 1 2 f ( x ) g ( x ) d x = 0 1 2 g ( x ) \int_{0}^{\frac{1}{2}} f(x) - g(x) dx = \int_{0}^{\frac{1}{2}} g(x) .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...