Area bounded by a parabola and a curve.

Level pending

Find the area of the region bounded by the curve f ( x ) = 4 5 ( x 1 x 2 ) f(x) = \dfrac{4}{5}(\sqrt{x} - \sqrt{1 - x^2}) and the parabola g ( x ) = 4 5 ( x 2 + x 1 ) g(x) = \dfrac{4}{5}(x^2 + x - 1) to five decimal places.


The answer is 0.11560.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Mar 21, 2018

By inspection we see that f ( 1 ) = g ( 1 ) = 4 5 f(1) = g(1) = \dfrac{4}{5} and f ( 0 ) = g ( 0 ) = 4 5 f(0) = g(0) = \dfrac{-4}{5} and for x > 0 x > 0

x 2 + x 1 = 0 x = 5 1 2 x^2 + x - 1 = 0 \implies x = \dfrac{\sqrt{5} - 1}{2} and x 1 x 2 = 0 x 2 + x 1 = 0 x = 5 1 2 \sqrt{x} - \sqrt{1 - x^2} = 0 \implies x^2 + x - 1 = 0 \implies x = \dfrac{\sqrt{5} - 1}{2} \implies

f ( 5 1 2 ) = g ( 5 1 2 ) = 0 f(\dfrac{\sqrt{5} - 1}{2}) = g(\dfrac{\sqrt{5} - 1}{2}) = 0 .

Since there are only three points of intersection we have them all.

Let x 0 = 5 1 2 x_{0} = \dfrac{\sqrt{5} - 1}{2}

A 1 = x 0 1 ( g ( x ) f ( x ) ) d x = 4 5 x 0 1 ( 1 x 2 x + x 2 + x 1 ) d x A_{1} = \int_{x_{0}}^{1} (g(x) - f(x)) dx = \dfrac{4}{5}\int_{x_{0}}^{1} (\sqrt{1 - x^2} - \sqrt{x} + x^2 + x - 1) dx

Let x = sin ( θ ) d x = cos ( θ ) x = \sin(\theta) \implies dx = \cos(\theta) \implies

A 1 = 4 5 ( π 4 1 2 arcsin ( x 0 ) 1 2 x 0 1 x 0 2 5 6 + 2 3 x 0 3 2 1 3 x 0 3 1 2 x 0 2 + x 0 ) A_{1} = \dfrac{4}{5}(\dfrac{\pi}{4} - \dfrac{1}{2}\arcsin(x_{0}) - \dfrac{1}{2}x_{0}\sqrt{1 - x_{0}^2} - \dfrac{5}{6} + \dfrac{2}{3}x_{0}^{\dfrac{3}{2}} - \dfrac{1}{3}x_{0}^{3} - \dfrac{1}{2}x_{0}^2 + x_{0}) .

In a similar fashion A 2 = 0 x 0 ( f ( x ) g ( x ) ) d x = 0 x 0 ( 1 x 2 + x x 2 x + 1 ) d x = A_{2} = \int_{0}^{x_{0}} (f(x) - g(x)) dx = \int_{0}^{x_{0}} (-\sqrt{1 - x^2} + \sqrt{x} - x^2 - x + 1) dx = 4 5 ( 1 2 arcsin ( x 0 ) 1 2 x 0 1 x 0 2 + 2 3 x 0 3 2 1 3 x 0 3 1 2 x 0 2 + x 0 ) \dfrac{4}{5}(\dfrac{-1}{2}\arcsin(x_{0}) - \dfrac{1}{2}x_{0}\sqrt{1 - x_{0}^2} + \dfrac{2}{3}x_{0}^{\dfrac{3}{2}} - \dfrac{1}{3}x_{0}^3 - \dfrac{1}{2}x_{0}^2 + x_{0})

The desired area A = A 1 + A 2 = 4 5 ( π 4 arcsin ( x 0 ) x 0 1 x 0 2 5 6 + 4 3 x 0 3 2 2 3 x 0 3 x 0 2 + 2 x 0 ) 0.11560 A = A_{1} + A_{2} = \dfrac{4}{5}(\dfrac{\pi}{4} - \arcsin(x_{0}) - x_{0}\sqrt{1 - x_{0}^2} - \dfrac{5}{6} + \dfrac{4}{3}x_{0}^{\dfrac{3}{2}} - \dfrac{2}{3}x_{0}^{3} - x_{0}^2 + 2x_{0}) \approx \boxed{0.11560} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...