Area by integration

Calculus Level 2

2 5 ( x + 1 + x + 2 2 x + 3 ) d x = ? \int_{-2}^5 \big(|x+1|+|x+2|-|2x+3| \big)\ dx = \ ?

Notation: |\cdot| denotes the absolute value function .


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 14, 2020

Let f ( x ) = x + 1 + x + 2 2 x + 3 f(x) = |x+1|+|x+2|-|2x+3| . Then we have:

{ For 2 x < 3 2 : f ( x ) = x 1 + x + 2 + 2 x + 3 = 2 x + 4 For 3 2 x < 1 : f ( x ) = x 1 + x + 2 2 x 3 = 2 x 2 For x 1 : f ( x ) = x + 1 + x + 2 2 x 3 = 0 \begin{cases} \text{For } -2 \le x < - \frac 32: & f(x) = - x - 1 + x + 2 + 2x + 3 = 2x+4 \\ \text{For } - \frac 32\le x < - 1: & f(x) = - x - 1 + x + 2 - 2x - 3 = -2x-2 \\ \text{For } x \ge -1: & f(x) = x+1 + x+2 - 2x -3 = 0 \end{cases}

Therefore,

2 5 f ( x ) d x = 2 3 2 f ( x ) d x + 3 2 1 f ( x ) d x + 1 5 f ( x ) d x = 2 3 2 2 x + 4 d x + 3 2 1 ( 2 x 2 ) d x + 1 5 0 d x = x 2 + 4 x 2 3 2 x 2 2 x 3 2 1 + 0 = 9 4 6 4 + 8 1 + 2 + 9 4 3 = 1 2 = 0.5 \begin{aligned} \int_{-2}^5 f(x)\ dx & = \int_{-2}^{-\frac 32} f(x)\ dx + \int_{-\frac 32}^{-1} f(x)\ dx + \int_{-1}^5 f(x)\ dx \\ & = \int_{-2}^{-\frac 32} 2x+4\ dx + \int_{-\frac 32}^{-1} (-2x-2)\ dx + \int_{-1}^5 0\ dx \\ & = x^2 + 4x \bigg|_{-2}^{-\frac 32} - x^2 - 2x \bigg|_{-\frac 32}^{-1} + 0 \\ & = \frac 94 - 6 - 4 + 8 - 1 + 2 + \frac 94 - 3 \\ & = \frac 12 = \boxed {0.5} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...