Area enclosed by what?

Calculus Level 1

What is the area enclosed by ( y x ) 2 = 4 (y-x)^{2}=4 and ( y + x ) 2 = 4 ? (y+x)^{2}=4?


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Maggie Miller
Aug 9, 2015

Preform the coordinate transformation u = y x , v = y + x u=y-x,v=y+x . Note the Jacobian has magnitude det ( 1 1 1 1 ) = 2 \bigg|\text{det}\begin{pmatrix}1&1\\-1&1\end{pmatrix}\bigg|=2 .

In the new coordinates, the region is mapped to the region bound by u 2 = 4 , v 2 = 4 u^2=4,v^2=4 . This is a square of side length four centered at the origin, so has area 16 16 .

Therefore, in the x y xy -plane the original region has area 16 2 = 8 \frac{16}{2}=\boxed{8} .

( y x ) 2 = 4 , y = x + 2...... ( 1 ) a n d y = x 2...... ( 2 ) ( y + x ) 2 = 4 , y = x + 2...... ( 3 ) a n d y = x 2...... ( 4 ) ( 1 ) a n d ( 3 ) i n t e r s e c t a t x = 0 a n d y = 2. ( 2 ) a n d ( 4 ) i n t e r s e c t a t x = 0 a n d y = 2. ( 1 ) a n d ( 4 ) i n t e r s e c t a t x = 2 a n d y = 0. ( 2 ) a n d ( 3 ) i n t e r s e c t a t x = 2 a n d y = 0. S o C o m m o n a r e a i s a s q u a r e A B C D ( 0 , 2 ) , ( 2 , 0 ) , ( 0 , 2 ) a n d ( 2 , 0 ) . T h e d i a g o n a l A C = 4 , S o a r e a A B C D = ( d i a g o n a l ) 2 / 2 = 8. (y-x)^2=4,~~~\implies~~y=x+2 ......(1) \\~~and~~ ~~~y=x-2 ......(2) \\ (y+x)^2=4,~~~~~~\implies~~y=-x+2 ......(3) \\ ~~ and~~ ~~~y=-x-2 ......(4) \\ (1)~ and~(3) ~intersect~at~x=0~and~y=2. \\ (2)~ and~(4) ~intersect~at~x=0~and~y=-2. \\ (1)~ and~(4) ~intersect~at~x=-2~and~y=0. \\ (2)~ and~(3) ~intersect~at~x=2~and~y=0. \\ So~Common ~area ~is~a~square~ABCD(0,2),(-2,0) ,(0,-2)~and~ (2,0) .\\ The~ diagonal ~AC=4,\\ So~area~ABCD~=(diagonal)^2/2=\Large 8.\\

( y x ) 2 = 4 = > (y-x)^{2}=4 => y = x + 2 y=x+2 or y = x 2 y=x-2 ( y + x ) 2 = 4 = > y = x + 2 (y+x)^{2}=4 => y=-x+2 or y = x 2 y=-x-2 So we are asked for the area of 4 4 times the right triangle formed by y = x + 2 y=x+2 and the coordinate axes. 4 2 2 2 = 8 4\cdot \frac{2\cdot2}{2} = 8

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...