Area Frenzy.

Level pending

In Rectangle A B C D ABCD above, A A B E = a , A A C F = a + 1 A_{\triangle{ABE}} = a, A_{\triangle{ACF}} = a + 1 and
A E D F = a + 2 A_{\triangle{EDF}} = a + 2 .

Find the value of a a for which A A E F = 4 6 A_{\triangle{AEF}} = 4\sqrt{6} .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jan 24, 2020

A E D F = a + 2 A_{EDF} = a + 2

A A C F = 1 2 ( x 2 ) y = a + 1 A_{ACF} = \dfrac{1}{2}(x - 2)y = a + 1 \implies

( 1 ) : x y 2 y = 2 ( a + 1 ) \boxed{(1): xy - 2y = 2(a + 1)}

A A B E = 1 2 ( y ( a + 2 ) ) x = a A_{\triangle{ABE}} = \dfrac{1}{2}(y - (a + 2))x = a \implies

( 2 ) : x y ( a + 2 ) x = 2 a \boxed{(2): xy - (a + 2)x = 2a}

Subtraction equation ( 2 ) (2) from equation ( 1 ) (1) we obtain:

( a + 2 ) x 2 y = 2 x = 2 ( 1 + y ) a + 2 (a + 2)x - 2y = 2 \implies x = \dfrac{2(1 + y)}{a + 2} \implies

Replacing x = 2 ( 1 + y ) a + 2 x = \dfrac{2(1 + y)}{a + 2} in equation ( 1 ) (1) we obtain:

y 2 ( a + 1 ) y ( a + 1 ) ( a + 2 ) = 0 y^2 - (a + 1)y - (a + 1)(a + 2) = 0 \implies y = a + 1 ± ( a + 1 ) ( 5 a + 9 ) 2 y = \dfrac{a + 1 \pm \sqrt{(a + 1)(5a + 9)}}{2}

a + 1 < 5 a 2 + 14 a + 9 a + 1 < \sqrt{5a^2 + 14a + 9} , so drop negative root and choose

y = a + 1 + 5 a 2 + 14 a + 9 2 y = \dfrac{a + 1 + \sqrt{5a^2 + 14a + 9}}{2} \implies

x = a + 3 + 5 a 2 + 14 a + 9 a + 2 x = \dfrac{a + 3 + \sqrt{5a^2 + 14a + 9}}{a + 2}

\implies The area of the square A s = 3 a + 3 + 5 a 2 + 14 a + 9 A_{s} = 3a + 3 + \sqrt{5a^2 + 14a + 9} \implies

The desired area A = 3 a + 3 + 5 a 2 + 14 a + 9 ( 3 a + 3 ) = 5 a 2 + 14 a + 9 = 4 6 A = 3a + 3 + \sqrt{5a^2 + 14a + 9} - (3a + 3) = \sqrt{5a^2 + 14a + 9} = 4\sqrt{6}

5 a 2 + 14 a + 9 = 96 5 a 2 + 14 a 87 = 0 ( a 3 ) ( 5 a + 29 ) = 0 \implies 5a^2 + 14a + 9 = 96 \implies 5a^2 + 14a - 87 = 0 \implies (a - 3)(5a + 29) = 0

a > 0 a = 3 a > 0 \implies a = \boxed{3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...