Area in a Triangle

Geometry Level 3

All line segments except for A B AB and C A CA are horizontal and vertical lines respectively.

A B = 9 AB = 9 , B C = 5 BC = 5 , and C A = 13 CA = 13 . The line segments B D BD' , D E D'E' , and E A E'A' each has the length one-third of the line segment B A BA' . Let the ratio of the area of the red quadrilateral over the area of A B C \triangle ABC be x x . Which is true about the value of x x ?


Try another problem!

17.5 % < x < 18 % 17.5\% < x < 18\% 18.5 % < x < 19 % 18.5\% < x < 19\% 18 % < x < 18.5 % 18\% < x < 18.5\% 17 % < x < 17.5 % 17\% < x < 17.5\% 19 % < x < 19.5 % 19\% < x < 19.5\%

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 13, 2020

Let A A = h AA' = h and B D = D E = D A = a BD'=D'E'=D'A'=a . Then we have:

{ A B : h 2 + ( 3 a ) 2 = 9 2 . . . ( 1 ) C A : h 2 + ( 3 a + 5 ) 2 = 1 3 2 . . . ( 2 ) ( 2 ) ( 1 ) : 30 a + 25 = 88 a = 2.1 \begin{cases} AB: & h^2 + (3a)^2 = 9^2 & ...(1) \\ CA: & h^2+(3a+5)^2 = 13^2 & ...(2) \end{cases} \implies (2) - (1): \ 30a + 25 = 88 \implies a = 2.1

The area of A B C \triangle ABC , [ A B C ] = B C h 2 = 2.5 h [ABC] = \dfrac {BC\cdot h}2 = 2.5 h . The area of the red region:

[ D E E D ] = [ C E E ] [ C D D ] [ D D E E ] = [ C E E ] [ C D D ] ( [ B E E ] [ B D D ] ) By similar triangles = ( 2 a + 5 3 a + 5 ) 2 [ A A C ] ( a + 5 3 a + 5 ) 2 [ A A C ] ( 2 a 3 a ) 2 [ A A B ] + ( a 3 a ) 2 [ A A B ] = ( 2 a + 5 ) 2 ( a + 5 ) 2 ( 3 a + 5 ) 2 [ A A C ] 2 2 1 2 3 2 [ A A B ] = 3 a 2 + 10 a ( 3 a + 5 ) 2 ( 3 a + 5 ) h 2 1 3 3 a h 2 = ( 3 a 2 + 10 a ) h 2 ( 3 a + 5 ) a h 2 = 34.23 h 22.6 2.1 h 2 0.4646 h \begin{aligned} [DEE''D''] & = [CEE']-[CDD']-[D'D''E''E'] \\ & = [CEE']-[CDD']- \big([BE'E''] - [BD'D'']\big) & \small \blue{\text{By similar triangles}} \\ & = \left(\frac {2a+5}{3a+5} \right)^2 [AA'C] - \left(\frac {a+5}{3a+5} \right)^2 [AA'C] - \left(\frac {2a}{3a} \right)^2 [AA'B] + \left(\frac a{3a} \right)^2 [AA'B] \\ & = \frac {(2a+5)^2-(a+5)^2}{(3a+5)^2} [AA'C] - \frac {2^2-1^2}{3^2} [AA'B] \\ & = \frac {3a^2+10a}{(3a+5)^2} \cdot \frac {(3a+5)h}2 - \frac 13 \cdot \frac {3ah}2 \\ & = \frac {(3a^2+10a)h}{2(3a+5)} - \frac {ah}2 \\ & = \frac {34.23h}{22.6} - \frac {2.1h}2 \\ & \approx 0.4646h \end{aligned}

Therefore x = [ D E E D ] A B C 0.4646 h 2.5 h 0.1858 = 18.58 % x = \dfrac {[DEE''D'']}{ABC} \approx \dfrac {0.4646h}{2.5h} \approx 0.1858 = 18.58 \% . 18.5 % < x < 19 % \implies \boxed{18.5\%<x<19\%} .

Kaizen Cyrus
Aug 13, 2020

The area of A B C \triangle ABC is 9 51 4 \frac{9 \sqrt{51}}{4} . Since line segments B D BD' , D E D'E' , and E A E'A' each has the length one-third of the line segment B A BA' , line segments A G AG , G F GF , and F B FB must have lengths one-third of A B AB , which would make them equal to 3 3 .

We notice that triangles A B H ABH , A F D AFD , and A G E AGE are all similar. Since area of A F D area of A B H = A F 2 A B 2 \frac{\text{area of} \space \triangle AFD}{\text{area of} \space \triangle ABH} = \frac{AF^{2}}{AB^{2}} = 4 9 = \frac49 and area of A G E area of A B H = A G 2 A B 2 = 1 9 \frac{\text{area of} \space \triangle AGE}{\text{area of} \space \triangle ABH} = \frac{AG^{2}}{AB^{2}} = \frac19 because of a theorem of similar triangles , the area of the red shape is only one-third of the area of A B H \triangle ABH .

Through the use of Law of Cosines , we find that B H = 45 51 113 BH = \frac{45\sqrt{51}}{113} and H A = 819 113 HA = \frac{819}{113} . Then the area of triangle A B H ABH is 567 51 452 \frac{567\sqrt{51}}{452} and one-third of that is 189 51 452 \frac{189 \sqrt{51}}{452} which is the area of the red shape.

area of D E G F area of A B C = 189 51 452 9 51 4 = 756 51 4068 51 = 21 113 0.18584 \small \dfrac{\text{area of} \space DEGF}{\text{area of}\space \triangle ABC} = \dfrac{\frac{189 \sqrt{51}}{452}}{\frac{9 \sqrt{51}}{4}} = \dfrac{756\sqrt{51}}{4068\sqrt{51}} = \dfrac{21}{113} ≈ 0.18584

Thus, 18.5 % < x < 19 % \boxed{18.5\% < x < 19\%} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...