Area Mania

Calculus Level 4

Let e e be Euler's number and x > 1 e |x| > \dfrac{1}{e} .

Let f ( x ) = lim n j = 1 n ( j n ) n ( 1 x ) n j f(x) = \lim_{n \rightarrow \infty} \sum_{j = 1}^{n} (\dfrac{j}{n})^n (\dfrac{1}{x})^{n - j} and g ( x ) = a x 2 + b x + c g(x) = ax^2 + bx + c .

If f ( 1 ) = g ( 1 ) f(1) = g(1) , f ( e ) = g ( e ) f(e) = g(e) and 1 e f ( x ) = 1 e g ( x ) \int_{1}^{e} f(x) = \int_{1}^{e} g(x) , find the area bounded by f ( x ) f(x) and g ( x ) g(x) on [ 6 , 12 ] [6,12] .


The answer is 48.533604.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jun 17, 2018

f ( x ) = lim n j = 1 n ( j n ) n ( 1 x ) n j = f(x) = \lim_{n \rightarrow \infty} \sum_{j = 1}^{n} (\dfrac{j}{n})^n (\dfrac{1}{x})^{n - j} = lim n j = 0 n 1 ( 1 j n ) n ( 1 x ) j = \lim_{n \rightarrow \infty} \sum_{j = 0}^{n - 1} (1 - \dfrac{j}{n})^n (\dfrac{1}{x})^{j} = j = 0 ( 1 e x ) j = e x e x 1 \sum_{j = 0}^{\infty} (\dfrac{1}{ex})^j = \dfrac{ex}{ex - 1} on x > 1 e |x| > \dfrac{1}{e} .

Let g ( x ) = a x 2 + b x + c g(x) = ax^2 + bx + c .

f ( 1 ) = g ( 1 ) a + b + c = e e 1 f(1) = g(1) \implies \boxed{a + b + c = \dfrac{e}{e - 1}}

f ( e ) = g ( e ) e 2 a + e b + c = e 2 e 2 1 f(e) = g(e) \implies \boxed{e^2a + eb + c = \dfrac{e^2}{e^2 - 1}}

1 e f ( x ) d x = 1 e 1 + 1 e x 1 d x = x + 1 e ln ( e x 1 ) 1 e = e ( e 1 ) + ln ( e + 1 ) e = 1 e g ( x ) = a x 3 3 + b x 2 2 + c x 1 e = \int_{1}^{e} f(x) dx = \int_{1}^{e} 1 + \dfrac{1}{ex - 1} dx = x + \dfrac{1}{e}\ln(ex - 1)|_{1}^{e} = \dfrac{e(e - 1) + \ln(e + 1)}{e} = \int_{1}^{e} g(x) = \dfrac{ax^3}{3} + \dfrac{bx^2}{2} + cx|_{1}^{e} =

1 3 ( e 1 ) ( e 2 + e 1 ) a + 1 2 ( e 1 ) ( e + 1 ) b + ( e 1 ) c \dfrac{1}{3}(e - 1)(e^2 + e - 1)a + \dfrac{1}{2}(e - 1)(e + 1)b + (e - 1)c \implies

2 ( e 2 + e + 1 ) a + 3 ( e + 1 ) b + 6 c = 6 ( e ( e 1 ) + ln ( e + 1 ) ( e 1 ) e ) \boxed{2(e^2 + e + 1)a + 3(e + 1)b + 6c = 6(\dfrac{e(e - 1) + \ln(e + 1)}{(e - 1)e})}

\implies

a + b + c = e e 1 \boxed{a + b + c = \dfrac{e}{e - 1}}

e 2 a + e b + c = e 2 e 2 1 \boxed{e^2a + eb + c = \dfrac{e^2}{e^2 - 1}}

2 ( e 2 + e + 1 ) a + 3 ( e + 1 ) b + 6 c = 6 ( e ( e 1 ) + ln ( e + 1 ) ( e 1 ) e ) \boxed{2(e^2 + e + 1)a + 3(e + 1)b + 6c = 6(\dfrac{e(e - 1) + \ln(e + 1)}{(e - 1)e})}

Solving the system we obtain:

a = 3 ( e 2 + 2 e 2 ( 1 + e ) ln ( 1 + e ) ) ( e 1 ) 3 ( 1 + e ) e a = \dfrac{3(e^2 + 2e - 2(1 + e)\ln(1 + e))}{(e - 1)^3 (1 + e) e}

b = 2 ( 2 e 3 + 4 e 2 + 3 e 3 ( e + 1 ) 2 ln ( 1 + e ) ) ( e 1 ) 3 ( 1 + e ) e b = \dfrac{-2(2e^3 + 4e^2 + 3e - 3(e + 1)^2\ln(1 + e))}{(e - 1)^3 (1 + e) e}

c = e 4 e 3 + 3 e 2 + 6 e 6 ( 1 + e ) ln ( 1 + e ) ( e 1 ) 3 ( 1 + e ) c = \dfrac{e^4 - e^3 + 3e^2 + 6e - 6(1 + e)\ln(1 + e)}{(e - 1)^3 (1 + e)}

6 12 g ( x ) d x = 504 a + 54 b + 6 c = \int_{6}^{12} g(x) dx = 504a + 54b + 6c =

1512 ( e 2 + 2 e 2 ( 1 + e ) ln ( 1 + e ) ) 108 ( 2 e 3 + 4 e 2 + 3 e 3 ( e + 1 ) 2 ln ( 1 + e ) ) + 6 e ( e 4 e 3 + 3 e 2 + 6 e 6 ( 1 + e ) ln ( 1 + e ) ) ( e 1 ) 3 ( 1 + e ) e = \dfrac{1512(e^2 + 2e - 2(1 + e)\ln(1 + e)) - 108(2e^3 + 4e^2 + 3e - 3(e + 1)^2\ln(1 + e)) + 6e(e^4 - e^3 + 3e^2 + 6e - 6(1 + e)\ln(1 + e))}{(e - 1)^3 (1 + e) e} =

6 e 5 6 e 4 198 e 3 + 1116 e 2 + 2700 e + 36 ( 8 e 75 ) ( e + 1 ) ln ( e + 1 ) ( e 1 ) 3 ( 1 + e ) e \dfrac{6e^5 - 6e^4 - 198e^3 + 1116e^2 + 2700e + 36(8e - 75)(e + 1)\ln(e + 1)}{(e - 1)^3 (1 + e) e}

2809.984144 57.276689 = 54.800421 \approx \dfrac{2809.984144}{57.276689} = \boxed{54.800421}

and

6 12 f ( x ) d x = 12 + 1 e ln ( 12 e 1 ) 6 1 e ln ( 6 e 1 ) = \int_{6}^{12} f(x) dx = 12 + \dfrac{1}{e}\ln(12e - 1) - 6 - \dfrac{1}{e}\ln(6e - 1) = 6 + 1 e ln ( 12 e 1 6 e 1 ) 6.266817 6 + \dfrac{1}{e}\ln(\dfrac{12e - 1}{6e - 1}) \approx \boxed{6.266817}

6 12 g ( x ) f ( x ) d x = 54.800421 6.266817 = 48.533604 \implies \int_{6}^{12} g(x) - f(x) dx = 54.800421 - 6.266817 = \boxed{48.533604} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...