Area of a cyclic triangle

Geometry Level 3

Find the area of A B C \triangle ABC given that:

  • The radius of the circle is 1m.
  • A B = 1 m AB\quad =\quad 1m
  • C A B = 50 \angle CAB\quad =\quad { 50 }^{ \circ }


The answer is 0.754406506.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zico Quintina
May 10, 2018

Slightly different approach:

Let O be the center of the circle. Then since O A = O B = A B = 1 , O A B OA = OB = AB = 1, \triangle OAB is equilateral and A O B = 6 0 \angle AOB = 60^\circ . Next, A C B = 1 2 A O B = 3 0 \angle ACB = \frac{1}{2} \angle AOB = 30^\circ as they both subtend arc A B AB ; this makes A B C = 10 0 \angle ABC = 100^\circ . Using sine law,

sin 10 0 A C = sin 3 0 1 sin 10 0 A C = 1 2 A C = 2 sin 10 0 \begin{aligned} \dfrac{\sin 100^\circ}{AC} &= \dfrac{\sin 30^\circ}{1} \\ \\ \dfrac{\sin 100^\circ}{AC} &= \dfrac{1}{2} \\ \\ AC &= 2 \sin 100^\circ \end{aligned}

Finally, the area A A of A B C \triangle ABC is

A = 1 2 ( A B ) ( A C ) s i n B A C = 1 2 ( 1 ) ( 2 sin 10 0 ) sin 5 0 0.754406506735 A = \dfrac{1}{2} (AB)(AC) sin \angle BAC = \dfrac{1}{2} (1)(2 \sin 100^\circ) \sin 50^\circ \approx \boxed{0.754406506735}

I have to admit, yours is slightly more efficient than mine. Great work!

Varun Santhosh - 3 years, 1 month ago
Varun Santhosh
May 10, 2018
  • Let O be the center of the circle.

  • OA=OB=AB as they are all radii O A B \therefore \triangle OAB is equilateral.

  • O A C = 60 C A B = 10 d e g \angle OAC\quad =\quad 60-\angle CAB\quad =\quad 10deg

  • Using the circle theorem "The angle subtended at the centre is twice the angle subtended at the circumference from the same points". C O B = 2 × B A C = 100 d e g \angle COB\quad =\quad 2\quad \times \quad \angle BAC\quad =\quad 100deg

  • O B C \triangle OBC is issoceles as two sides are radii. Thus, O B C = O C B = 1 2 ( 180 C O B ) = 40 \angle OBC\quad =\quad \angle OCB\quad =\quad \frac { 1 }{ 2 } (180-\angle COB)\quad =\quad 40\quad

  • A C B = 40 10 = 30 d e g \angle ACB\quad =\quad 40-10\quad =\quad 30deg

  • From here, use the sine rule, a sin A = b sin B = c sin C \frac { a }{ \sin { A } } =\frac { b }{ \sin { B } } =\frac { c }{ \sin { C } } , To work out length BC.

  • B C = 1 × sin 50 sin 30 = 1.532 ( 3 d . p ) BC\quad =\quad \frac { 1\quad \times \quad \sin { 50 } }{ \sin { 30 } } \quad =\quad 1.532\quad (3\quad d.p)

  • Now, use 1 2 a b sin C \frac { 1 }{ 2 } ab\sin { C } to work out the area.

  • 1 2 × 1.532... × 1 × ( 180 50 30 ) = 0.754406506 m 2 \frac { 1 }{ 2 } \quad \times \quad 1.532...\quad \times \quad 1\quad \times \quad (180-50-30)\quad =\quad 0.754406506{ m }^{ 2 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...