Area Of A Kite.

Level pending

(1) Find m E G F m\angle{EGF} .

(2) If the area of the kite E G F H EGFH is 50 50 , find the length of a side of the square A B D C ABDC .

If y y is the length of a side of square A B D C ABDC , express the answer as m E G F + y . m\angle{EGF} + y.


The answer is 160.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 16, 2019

In E H F \triangle{EHF} , E H H F \overline{\rm EH} \cong \overline{\rm HF} \implies

H I \overline{\rm HI} is the \perp bisector of E F H I E EF\ \implies \angle{HIE} is a right angle and E I I F \overline{\rm EI} \cong \overline{\rm IF}

and y = H G A C E F E H F y = \overline{\rm HG} \cong \overline{\rm AC} \cong \overline{\rm EF} \implies \triangle{EHF} is an equilateral triangle m E H G = 3 0 \implies m\angle{EHG} = 30^\circ \implies

m E G H = m H E G = 7 5 m\angle{EGH} = m\angle{HEG} = 75^{\circ} in isosceles E H G m E G F = 15 0 \triangle{EHG} \implies m\angle{EGF} = \boxed{150^\circ}

In isosceles E G H \triangle{EGH} the height h = sin ( 7 5 ) y = cos ( 1 5 ) y h = \sin(75^\circ)y = \cos(15^\circ)y and using the law of cosines

z = E G = 2 y sin ( 1 5 ) A H E G = 1 2 sin ( 3 0 ) = 1 4 y 2 \implies z = \overline{EG} = 2y\sin(15^\circ) \implies A_{\triangle{HEG}} = \dfrac{1}{2}\sin(30^{\circ}) = \dfrac{1}{4}y^2 \implies

A E G F H = 2 A H E G = 1 2 y 2 = 50 y = 10 A_{EGFH} = 2A_{\triangle{HEG}} = \dfrac{1}{2}y^2 = 50 \implies y = \boxed{10}

m E G F + y = 150 + 10 = 160 \implies m\angle{EGF} + y = 150 + 10 = \boxed{160} .

Cute problem

Valentin Duringer - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...