If the Area of the region bounded by the curve and the perpendicular lines can be expressed as where and are coprime positive integers.
Find:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
B e g i n
Using the equations of rotation to rotate the x and y axis we have:
x = x ′ c o s θ − y ′ s i n θ
y = x ′ s i n θ + y ′ c o s θ
Replacing the equations of rotation in the original equation and simplifying we obtain:
( 1 6 c o s 2 θ − 1 2 s i n ( 2 θ ) + 9 s i n 2 θ ) x ′ 2 − ( 7 s i n ( 2 θ ) + 2 4 c o s ( 2 θ ) ) x ′ y ′ +
( 1 6 s i n 2 θ + 1 2 s i n ( 2 θ ) + 9 c o s 2 θ ) y ′ 2 − 5 ( 3 c o s θ + 4 s i n θ ) x ′ + 5 ( 3 s i n θ − 4 c o s θ ) y ′ = 0 .
To eliminate the x ′ y ′ term set 7 s i n ( 2 θ ) + 2 4 c o s ( 2 θ ) = 0 ⟹ t a n ( 2 θ ) = − 7 2 4
⟹ t a n 2 θ = 1 − t a n 2 θ 2 t a n θ = − 7 2 4 ⟹
1 2 t a n 2 θ − 7 t a n θ − 1 2 = 0 ⟹ t a n θ = 2 4 7 ± 2 5
Since the sign of xy term is negative we choose t a n θ = − 4 3 ⟹ c o s θ = 5 4 and s i n θ = − 5 3 ⟹
x = 5 4 x ′ + 5 3 y ′
y = − 5 3 x ′ + 5 4 y ′
Replacing the equations of rotation in the original equation and simplifying we obtain:
y ′ = x ′ 2
So we have a parabola in the x ′ y ′ system.
Two points on the line x − 7 y + 1 0 = 0 a r e
( − 1 0 , 0 ) and ( 0 , 7 1 0 )
For ( − 1 0 , 0 ) we have:
− 1 0 = 5 4 x ′ + 5 3 y ′
0 = − 5 3 x ′ + 5 4 y ′
⟹ ( x ′ = − 8 , y ′ = − 6 )
Similarly, ( 0 , 7 1 0 ) → ( x ′ = − 7 6 , y ′ = 7 8 )
Using the points in the x ′ y ′ s y s t e m ( x ′ = − 8 , y ′ = − 6 ) , ( x ′ = − 7 6 , y ′ = 7 8 ) ⟹
s l o p e m = 1 ⟹ y ′ = x ′ + 2
Two points on the line 7 x + y − 1 0 = 0 a r e
( 0 , 1 0 ) a n d ( 7 1 0 , 0 )
Similarly, ( 0 , 1 0 ) → ( x ′ = − 6 , y ′ = 8 ) and ( 7 1 0 , 0 ) → ( x ′ = 7 8 , y ′ = 7 6 )
Using the points in the x ′ y ′ s y s t e m ( x ′ = − 6 , y ′ = 8 ) , ( x ′ = 7 8 , y ′ = 7 6 ) ⟹
⟹ s l o p e m = − 1 ⟹ y ′ = − x ′ + 2
y ′ = − x ′ + 2 a n d y ′ = x ′ 2 ⟹ x ′ 2 + x ′ − 2 = 0 ⟹ x ′ = 1 , x ′ = − 2 ⟹
The points of intersection of y ′ = − x ′ + 2 a n d y ′ = x ′ 2 are ( 1 , 1 ) , ( − 2 , 4 )
Simiarily, y ′ = x ′ 2 a n d y ′ = x ′ + 2 intersect at ( − 1 , 1 ) a n d ( 2 , 4 ) .
Using the symmetry about the y ′ a x i s the total area A = 2 ∗ ∫ 0 2 x ′ + 2 − x ′ 2 d x ′ = 2 ∗ ∫ 0 2 − x ′ 2 + x ′ + 2 d x ′ =
2 ∗ ( − 3 x ′ 3 + 2 x ′ 2 + 2 x ′ ) ∣ 0 2 = 3 2 0 = b a ⟹ a + b = 2 3 .
E n d .
Another method to find the desired area, although it's not practical, is as follows:
In the x ′ y ′ system:
Let A : ( 2 , 4 ) B : ( 1 , 1 ) C : ( − 1 , 1 ) D : ( − 2 , 4 ) O : ( 0 , 2 )
Since the lines are perpendicular ∠ A O B , ∠ B O C ∠ D O C are all right angles. ∴ △ A O B , △ B O C , △ D O C are all right triangles.
O A = 2 2 = O D a n d O B = 2 ⟹ A r e a △ A O B = A r e a △ D O C = 2 .
O C = 2 ⟹ A r e a △ B O C = 1 ⟹ A 1 = Area of all triangles = 5
s l o p e m A B = 3 ⟹ y ′ = 3 x ′ − 2 o n ( 1 < = x ′ < = 2 )
y ′ = 1 o n ( − 1 < = x ′ < = 1 )
s l o p e m C D = − 3 ⟹ y ′ = − 3 x ′ − 2 o n ( − 2 < = x ′ < = − 1 )
A 2 = 2 ∗ ∫ 1 2 ( 3 x ′ − 2 − x ′ 2 ) d x ′ + ∫ − 1 1 ( 1 − x ′ 2 ) d x ′ = 3 5
∴ Total Area A = A 1 + A 2 = 5 + 3 5 = 3 2 0 .