Area of a Region

Calculus Level 5

If the Area of the region bounded by the curve 16 x 2 24 x y + 9 y 2 15 x 20 y = 0 {\bf 16 x^2 - 24 xy + 9 y^2 - 15 x - 20 y = 0 } and the perpendicular lines x 7 y + 10 = 0 a n d 7 x + y 10 = 0 {\bf x - 7 y + 10 = 0 \: and \: 7 x + y - 10 = 0 } can be expressed as a b , {\bf \frac{a}{b} \:,} where a {\bf a } and b {\bf b } are coprime positive integers.

Find: a + b . {\bf a + b. }


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Oct 19, 2016

B e g i n {\bf Begin }

Using the equations of rotation to rotate the x and y axis we have:

x = x c o s θ y s i n θ {\bf x = x' cos\theta - y' sin\theta }

y = x s i n θ + y c o s θ {\bf y = x' sin\theta + y' cos\theta }

Replacing the equations of rotation in the original equation and simplifying we obtain:

( 16 c o s 2 θ 12 s i n ( 2 θ ) + 9 s i n 2 θ ) x 2 ( 7 s i n ( 2 θ ) + 24 c o s ( 2 θ ) ) x y + {\bf (16 cos^2\theta - 12 sin(2\theta) + 9 sin^2\theta)x'^2 - (7 sin(2\theta) + 24 cos(2\theta))x'y' +}

( 16 s i n 2 θ + 12 s i n ( 2 θ ) + 9 c o s 2 θ ) y 2 5 ( 3 c o s θ + 4 s i n θ ) x + 5 ( 3 s i n θ 4 c o s θ ) y = 0. {\bf (16 sin^2\theta + 12 sin(2\theta) + 9 cos^2\theta)y'^2 - 5(3 cos\theta + 4 sin\theta)x' + 5 (3 sin\theta - 4 cos\theta)y' = 0. }

To eliminate the x y {\bf x'y' } term set 7 s i n ( 2 θ ) + 24 c o s ( 2 θ ) = 0 t a n ( 2 θ ) = 24 7 {\bf 7 sin(2\theta) + 24 cos(2\theta) = 0 \implies tan(2\theta) = -\frac{24}{7} }

t a n 2 θ = 2 t a n θ 1 t a n 2 θ = 24 7 {\bf \implies tan2\theta = \frac{2 tan\theta}{1 - tan^2\theta} = -\frac{24}{7} \implies }

12 t a n 2 θ 7 t a n θ 12 = 0 t a n θ = 7 ± 25 24 {\bf 12 tan^2\theta - 7 tan\theta - 12 = 0 \implies tan\theta = \frac{7 \:\pm \:25}{24} }

Since the sign of xy term is negative we choose t a n θ = 3 4 c o s θ = 4 5 {\bf tan\theta = -\frac{3}{4} \implies cos\theta = \frac{4}{\sqrt{5}} } and s i n θ = 3 5 {\bf sin\theta = -\frac{3}{\sqrt{5}} \implies }

x = 4 5 x + 3 5 y {\bf x = \frac{4}{5} x' + \frac{3}{5} y'}

y = 3 5 x + 4 5 y {\bf y = -\frac{3}{5} x' + \frac{4}{5} y' }

Replacing the equations of rotation in the original equation and simplifying we obtain:

y = x 2 {\bf y' = x'^2 }

So we have a parabola in the x y {\bf x'y' } system.

Two points on the line x 7 y + 10 = 0 a r e {\bf x - 7 y + 10 = 0 \: are }

( 10 , 0 ) {\bf (-10, 0) } and ( 0 , 10 7 ) {\bf (0 , \frac{10}{7}) }

For ( 10 , 0 ) {\bf (-10, 0) } we have:

10 = 4 5 x + 3 5 y {\bf -10 = \frac{4}{5} x' + \frac{3}{5} y' }

0 = 3 5 x + 4 5 y {\bf 0 = -\frac{3}{5} x' + \frac{4}{5} y' }

( x = 8 , y = 6 ) {\bf \implies (x' = -8, y' = -6) }

Similarly, ( 0 , 10 7 ) ( x = 6 7 , y = 8 7 ) {\bf (0, \frac{10}{7}) \rightarrow (x' = -\frac{6}{7}, y' = \frac{8}{7}) }

Using the points in the x y s y s t e m ( x = 8 , y = 6 ) , ( x = 6 7 , y = 8 7 ) {\bf x'y' \: system \: (x' = -8, y' = -6) \:, \: (x' = -\frac{6}{7} , y' = \frac{8}{7}) \implies }

s l o p e m = 1 y = x + 2 {\bf slope \: m = 1 \implies y' = x' + 2 }

Two points on the line 7 x + y 10 = 0 a r e {\bf 7 x + y - 10 = 0 \: are }

( 0 , 10 ) a n d ( 10 7 , 0 ) {\bf (0 , 10) \: and (\frac{10}{7}, 0) }

Similarly, ( 0 , 10 ) ( x = 6 , y = 8 ) {\bf (0, 10) \rightarrow (x' = -6 , y' = 8) } and ( 10 7 , 0 ) ( x = 8 7 , y = 6 7 ) {\bf (\frac{10}{7} , 0) \rightarrow (x' = \frac{8}{7}, y' = \frac{6}{7}) }

Using the points in the x y s y s t e m ( x = 6 , y = 8 ) , ( x = 8 7 , y = 6 7 ) {\bf x'y' \: system \: (x' = -6 , y' = 8) , (x' = \frac{8}{7} , y' = \frac{6}{7}) \implies }

s l o p e m = 1 y = x + 2 {\bf \implies slope \: m = -1 \implies y' = -x' + 2 }

y = x + 2 a n d y = x 2 x 2 + x 2 = 0 x = 1 , x = 2 {\bf y' = -x' + 2 \: and \: y' = x'^2 \implies x'^2 + x' - 2 = 0 \implies x' = 1 \:, x' = -2\: \implies }

The points of intersection of y = x + 2 a n d y = x 2 {\bf y' = -x' + 2 \: and \: y' = x'^2 } are ( 1 , 1 ) , ( 2 , 4 ) {\bf (1 \:, 1) \:, (-2 \:, 4) }

Simiarily, y = x 2 a n d y = x + 2 {\bf y' = x'^2 \: and \: y' = x' + 2 } intersect at ( 1 , 1 ) a n d ( 2 , 4 ) . {\bf (-1 , 1) \: and \: (2 , 4). }

Using the symmetry about the y a x i s {\bf y' \: axis } the total area A = 2 0 2 x + 2 x 2 d x = 2 0 2 x 2 + x + 2 d x = {\bf A = 2 * \int_{0}^{2} x' + 2 - x'^2 dx' = 2 * \int_{0}^{2} -x'^2 + x' + 2 dx' = }

2 ( x 3 3 + x 2 2 + 2 x ) 0 2 = 20 3 = a b a + b = 23. {\bf 2 * (-\frac{x'^3}{3} + \frac{x'^2}{2} + 2 x') \: |_{0}^{2} = \frac{20}{3} = \frac{a}{b} \implies a + b = 23. }

E n d . {\bf End. }

Another method to find the desired area, although it's not practical, is as follows:

In the x y {\bf x'y' } system:

Let A : ( 2 , 4 ) B : ( 1 , 1 ) C : ( 1 , 1 ) D : ( 2 , 4 ) O : ( 0 , 2 ) {\ A:(2,4) \: B:(1,1) \: C:(-1,1) \: D:(-2,4) \: O:(0,2) }

Since the lines are perpendicular A O B , B O C D O C {\bf \angle AOB, \angle BOC \angle DOC } are all right angles. A O B , B O C , D O C {\bf \therefore \triangle AOB, \triangle BOC, \triangle DOC } are all right triangles.

O A = 2 2 = O D a n d O B = 2 A r e a A O B = A r e a D O C = 2. {\bf OA = 2\sqrt{2} = OD \: and \: OB = \sqrt{2} \implies \: Area_{\triangle AOB} = Area_{\triangle DOC} = 2. }

O C = 2 A r e a B O C = 1 A 1 = {\bf OC = \sqrt{2} \implies \: Area_{\triangle BOC} = 1 \implies A_{1} = } Area of all triangles = 5 {\bf = 5 }

s l o p e m A B = 3 y = 3 x 2 o n ( 1 < = x < = 2 ) {\bf slope \: m_{AB} = 3 \implies y' = 3 x' - 2 \: on \: (1 <= x' <= 2) }

y = 1 o n ( 1 < = x < = 1 ) {\bf y' = 1 \: on \: (-1 <= x' <= 1) }

s l o p e m C D = 3 y = 3 x 2 o n ( 2 < = x < = 1 ) {\bf \: slope \: m_{CD} = -3 \implies y' = -3 x' - 2 \: on \: (-2 <= x' <= -1) }

A 2 = 2 1 2 ( 3 x 2 x 2 ) d x {\bf A_{2} = 2 * \int_{1}^{2} (3 x' - 2 - x'^2) dx' } + 1 1 ( 1 x 2 ) d x {\bf + \int_{-1}^{1} (1 - x'^2) dx' } = 5 3 {\bf \frac{5}{3} }

{\bf \therefore } Total Area A = A 1 + A 2 = 5 + 5 3 = 20 3 . {\bf A = A_{1} + A_{2} = 5 + \frac{5}{3} = \frac{20}{3}. }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...