Area of a Region

Calculus Level pending

The region bounded by the curve 2 x 2 + 12 x y 3 y 2 42 = 0 {\bf 2 x^2 + 12 xy - 3 y^2 - 42 = 0 } and the parallel lines 3 13 x 2 13 y + 39 = 0 {\bf -3\sqrt{13}\:x - 2\sqrt{13}\:y + 39 = 0 } and 3 13 x 2 13 y 39 = 0 {\bf -3\sqrt{13}\:x - 2\sqrt{13}\:y - 39 = 0 } can be expressed as b a b ( a b c + c l n ( a + b c ) ) {\bf b\sqrt{a * b} (a\sqrt{\frac{b}{c}} + \sqrt{c}\:ln(\frac{a + \sqrt{b}}{\sqrt{c}})) } , where a , b , a n d c {\bf a\:,b\:,and\: c } are coprime positive integers.

Find: a + b + c . {\bf a + b + c. }


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Oct 17, 2016

Using the equations of rotation to rotate the x and y axis we have:

x = x c o s θ y s i n θ {\bf x = x' cos\theta - y' sin\theta }

y = x s i n θ + y c o s θ {\bf y = x' sin\theta + y' cos\theta }

Replacing the equations of rotation in the original equation and simplifying we obtain:

( 2 c o s 2 θ + 12 c o s θ s i n θ 3 s i n 2 θ ) x 2 + ( 12 c o s ( 2 θ ) 5 s i n ( 2 θ ) ) x y + {\bf (2 cos^2\theta + 12 cos\theta sin\theta - 3 sin^2\theta)x'^2 + (12 cos(2\theta) - 5 sin(2\theta))x'y' +}

( 2 s i n 2 θ 12 c o s θ s i n θ 3 c o s 2 θ ) y 2 42 = 0. {\bf (2 sin^2\theta - 12 cos\theta sin\theta - 3 cos^2\theta)y'^2 - 42 = 0. }

To eliminate the x y {\bf x'y' } term set 12 c o s ( 2 θ ) 5 c o s ( 2 θ ) = 0 t a n ( 2 θ ) = 12 5 {\bf 12 cos(2\theta) - 5 cos(2\theta) = 0 \implies tan(2\theta) = \frac{12}{5} }

t a n 2 θ = 2 t a n θ 1 t a n 2 θ = 12 5 {\bf \implies tan2\theta = \frac{2 tan\theta}{1 - tan^2\theta} = \frac{12}{5} \implies }

6 t a n 2 θ + 5 t a n θ 6 = 0 t a n θ = 5 ± 13 12 {\bf 6 tan^2\theta + 5 tan\theta - 6 = 0 \implies tan\theta = \frac{-5 \:\pm \:13}{12} }

Choosing the positive value of t a n θ t a n θ = 2 3 c o s θ = 3 13 {\bf tan\theta \implies tan\theta = \frac{2}{3} \implies cos\theta = \frac{3}{\sqrt{13}} } and s i n θ = 2 13 {\bf sin\theta = \frac{2}{\sqrt{13}} \implies }

x = 3 13 x 2 13 y {\bf x = \frac{3}{\sqrt{13}} x' - \frac{2}{\sqrt{13}} y'}

y = 2 13 x + 3 13 y {\bf y = \frac{2}{\sqrt{13}} x' + \frac{3}{\sqrt{13}} y' }

Replacing the equations of rotation in the original equation and simplifying we obtain:

78 x 2 91 y 2 = 546 {\bf 78 x'^2 - 91 y'^2 = 546 }

x 2 7 y 2 6 = 1 o r 6 x 2 7 y 2 = 42 {\bf \implies \frac{x'^2}{7} - \frac{y'2}{6} = 1 \: or \: 6 x'^2 - 7 y'^2 = 42 }

So we have a hyperbola in the x y {\bf x'y' } system.

3 13 x 2 13 y + 39 = 0 y = 3 2 x + 39 2 13 {\bf -3\sqrt{13}\:x - 2\sqrt{13}\:y + 39 = 0 \implies y = -\frac{3}{\sqrt{2}}\:x + \frac{39}{2\sqrt{13}} }

Two point on this line are ( 0 , 39 2 13 ) {\bf (0, \frac{39}{2\sqrt{13}}) } and ( 13 , 0 ) {\bf (\sqrt{13}, 0) }

Rotating the point ( 13 , 0 ) {\bf (\sqrt{13}, 0) } we have:

13 = 3 13 x 2 13 y {\bf \sqrt{13} = \frac{3}{\sqrt{13}} x' - \frac{2}{\sqrt{13}} y' }

0 = 2 13 x + 3 13 y ( x = 3 , y = 2 ) {\bf 0 = \frac{2}{\sqrt{13}} x' + \frac{3}{\sqrt{13}} y' \implies (x' = 3,y' = -2) }

Similarily, rotating the point ( 0 , 39 2 13 ) ) ( x = 3 , y = 9 2 ) {\bf (0, \frac{39}{2\sqrt{13}}) ) \implies (x' = 3,y' = \frac{9}{2}) }

{\bf \therefore } In the x y {\bf x'y'} system we have the line x = 3 , {\bf x' = 3, \:} and the curve 6 x 2 7 y 2 = 42 {\bf 6 x'^2 - 7 y'^2 = 42 } and the line x = 3 {\bf x' = 3 } intersect at ( 3 , 2 3 7 ) {\bf (3,2\sqrt{\frac{3}{7}}) } and ( 3 , 2 3 7 ) {\bf (3,-2\sqrt{\frac{3}{7}}) \implies }

A r e a A 1 = 2 3 7 2 3 7 3 d y {\bf Area A_{1} = \int_{-2\sqrt{\frac{3}{7}}}^{2\sqrt{\frac{3}{7}}} 3 dy' } 7 6 2 3 7 2 3 7 y 2 + 6 d y = 12 3 7 7 6 2 3 7 2 3 7 y 2 + 6 d y {\bf - \sqrt{\frac{7}{6}} \int_{-2\sqrt{\frac{3}{7}}}^{2\sqrt{\frac{3}{7}}} \sqrt{y'^2 + 6} dy' = 12\sqrt{\frac{3}{7}} - \sqrt{\frac{7}{6}} \int_{-2\sqrt{\frac{3}{7}}}^{2\sqrt{\frac{3}{7}}} \sqrt{y'^2 + 6} dy' }

For I ( y ) = 7 6 y 2 + 6 d y {\bf I(y') = \sqrt{\frac{7}{6}} \int \sqrt{y'^2 + 6} \: dy' }

Let y = 6 t a n θ d y = 6 s e c 2 θ {\bf y' = \sqrt{6} tan\theta \implies dy' = \sqrt{6} sec^2\theta \implies }

I ( θ ) = 42 s e c 3 θ d θ {\bf I(\theta) = \sqrt{42} \int sec^3\theta d\theta }

Using integration by parts l e t u = s e c θ d u = s e c θ t a n θ d θ {\bf \: let \: u = sec\theta \implies du = sec\theta tan\theta d\theta } and

d v = s e c 2 θ d θ v = t a n θ {\bf dv = sec^2\theta d\theta \implies v = tan\theta \implies }

s e c 3 θ d θ = 1 2 ( s e c θ t a n θ + l n s e c θ + t a n θ ) ) {\bf \int sec^3\theta d\theta = \frac{1}{2} (sec\theta tan\theta + ln|sec\theta + tan\theta)|) }

For π 2 < θ < π 2 L e t 0 < θ < π 2 {\bf -\frac{\pi}{2} < \theta < \frac{\pi}{2} \: Let \: 0 < \theta < \frac{\pi}{2} \implies }

I θ = 42 2 θ θ s e c 3 θ d θ = {\bf I_{\theta} = \frac{\sqrt{42}}{2} \int_{-\theta}^{\theta} sec^3\theta d\theta = }

42 ( s e c θ t a n θ + l n 1 + s i n θ c o s θ ) {\bf \sqrt{42} (sec\theta tan\theta + ln|\frac{1 + sin\theta}{cos\theta}|) }

y = 6 t a n θ t a n θ = 2 14 , s e c θ = 3 7 {\bf y' = \sqrt{6} tan\theta \implies tan\theta = \frac{2}{\sqrt{14}}\:, sec\theta = \frac{3}{\sqrt{7}} }

s i n θ = 2 3 , a n d c o s θ = 7 3 {\bf sin\theta = \frac{\sqrt{2}}{3}, \: and \: cos\theta = \frac{\sqrt{7}}{3} \implies }

I = 6 21 7 + 42 l n ( 3 + 2 7 ) {\bf I = \frac{6\sqrt{21}}{7} + \sqrt{42} ln(\frac{3 + \sqrt{2}}{\sqrt{7}}) \implies }

Area A 1 = 12 3 7 6 3 7 + 42 l n ( 3 + 2 7 ) = {\bf A_{1} = 12\sqrt{\frac{3}{7}} - 6\sqrt{\frac{3}{7}} + \sqrt{42} ln(\frac{3 + \sqrt{2}}{\sqrt{7}}) = }

6 3 7 + 42 l n ( 3 + 2 7 ) = {\bf 6\sqrt{\frac{3}{7}} + \sqrt{42} ln(\frac{3 + \sqrt{2}}{\sqrt{7}}) = }

6 ( 3 2 7 + 7 l n ( 3 + 2 7 ) ) {\bf \sqrt{6} (3\sqrt{\frac{2}{7}} + \sqrt{7} ln(\frac{3 + \sqrt{2}}{\sqrt{7}})) }

By symmetry A r e a A 1 = A 2 {\bf Area \: A_{1} = A_{2} \implies }

T o t a l A r e a A = 2 A 1 = 2 6 ( 3 2 7 + 7 l n ( 3 + 2 7 ) ) = {\bf \:Total \: Area \: A = 2 A_{1} = 2\sqrt{6} (3\sqrt{\frac{2}{7}} + \sqrt{7} ln(\frac{3 + \sqrt{2}}{\sqrt{7}})) = }

2 3 2 ( 3 2 7 + 7 l n ( 3 + 2 7 ) ) = {\bf 2\sqrt{3 * 2} (3\sqrt{\frac{2}{7}} + \sqrt{7} ln(\frac{3 + \sqrt{2}}{\sqrt{7}})) = }

b a b ( a b c + c l n ( a + b c ) ) {\bf b\sqrt{a * b} (a\sqrt{\frac{b}{c}} + \sqrt{c} ln(\frac{a + \sqrt{b}}{\sqrt{c}})) \implies }

a = 3 , b = 2 , a n d c = 7 a + b + c = 12. {\bf a = 3,\: b = 2,\: and \: c = 7 \implies a + b + c = 12. }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...