Area of a Segment of a Circle.

Geometry Level pending

In the above semicircle, chords A B , B C AB, BC and C D CD have lengths 6 , 6 6,6 and 14 14 respectively.

If the area A A of the shaded region above can be expressed as

A = a b ( arccos ( c a ) π b ) d b A = a^b(\arccos(-\dfrac{c}{a}) - \dfrac{\pi}{b}) - d\sqrt{b} , where a , b , c a,b,c and d d are coprime positive integers, find a + b + c + d a + b + c + d .


The answer is 46.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jan 13, 2020

Using the above diagram 2 ( 180 2 θ ) + λ = 180 λ = 4 θ 180 2(180 - 2\theta) + \lambda = 180 \implies \lambda = 4\theta - 180 \implies

m = 180 2 θ m = 180 - 2\theta .

For A O B \triangle{AOB} using the law of cosines we have:

36 = 2 r 2 ( 1 cos ( 180 2 θ ) ) 18 = r 2 ( 1 + cos ( 2 θ ) ) r 2 = 18 1 + cos ( 2 θ ) 36 = 2r^2(1 - \cos(180 - 2\theta)) \implies 18 = r^2(1 + \cos(2\theta)) \implies r^2 = \dfrac{18}{1 + \cos(2\theta)}

and

for C O D \triangle{COD} using the law of cosines we have:

196 2 r 2 ( 1 + cos ( 4 θ ) ) 49 = r 2 ( cos 2 ( 2 θ ) ) 196 - 2r^2(1 + \cos(4\theta)) \implies 49 = r^2(\cos^2(2\theta)) \implies

49 + 49 cos ( 2 θ ) = 18 cos 2 ( 2 θ ) 18 cos 2 ( θ ) 49 cos ( 2 θ ) 49 = 0 49 + 49\cos(2\theta) = 18\cos^2(2\theta) \implies 18\cos^2(\theta) - 49\cos(2\theta) - 49 = 0 \implies

cos ( 2 θ ) = 49 ± 77 2 \cos(2\theta) = \dfrac{49 \pm 77}{2} and cos ( u ) 1 cos ( 2 θ ) = 7 9 |\cos(u)| \leq 1 \implies \cos(2\theta) = -\dfrac{7}{9}

r 2 = 18 1 7 9 = 81 r = 9. \implies r^2 = \dfrac{18}{1 - \dfrac{7}{9}} = 81 \implies r = 9.

Let h h be the height of C O D h = 81 49 = 32 = 4 2 \triangle{COD} \implies h = \sqrt{81 -49} = \sqrt{32} = 4\sqrt{2} \implies A C O D = 28 2 A_{\triangle{COD}} = 28\sqrt{2}

From above cos ( 2 θ ) = 7 9 \cos(2\theta) = -\dfrac{7}{9} \implies

The area of sector C O D COD is A = 1 2 ( 4 θ π ) 81 = A^{*} = \dfrac{1}{2}(4\theta - \pi)81 = 81 2 ( 2 arccos ( 7 9 ) π ) = 81 ( arccos ( 7 9 ) π 2 ) \dfrac{81}{2}(2\arccos(-\dfrac{7}{9}) - \pi) = 81(\arccos(-\dfrac{7}{9}) - \dfrac{\pi}{2})

\implies

The desired area is A = A A C O D = 81 ( arccos ( 7 9 ) π 2 ) 28 2 = A = A^{*} - A_{\triangle{COD}} = 81(\arccos(-\dfrac{7}{9}) - \dfrac{\pi}{2}) - 28\sqrt{2} =

9 2 ( arccos ( 7 9 ) π 2 ) 28 2 = a b ( arccos ( c a ) π b ) d b 9^2(\arccos(-\dfrac{7}{9}) - \dfrac{\pi}{2}) - 28\sqrt{2} = a^b(\arccos(-\dfrac{c}{a}) - \dfrac{\pi}{b}) - d\sqrt{b} \implies

a + b + c + d = 46 a + b + c + d = \boxed{46} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...