Area Of A Shaded Region.

Geometry Level 4

In the diagram above, P P is the center of the circle. If the area of the shaded region can be represented as a b π c b \dfrac{a}{b}\pi - \dfrac{c}{\sqrt{b}} , where a a , b b and c c are coprime positive integers, find a + b + c a + b + c .


The answer is 248.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Mar 23, 2020

Since A B D C ABDC is a cyclic quadrilateral , A D C = A B C = 3 0 \angle ADC = \angle ABC = 30^\circ and C A D = C B D = 3 0 \angle CAD = \angle CBD = 30^\circ , therefore A C D \triangle ACD is isosceles and A C = C D = a AC=CD=a . Also the angle at the center is twice at at the circumference, then A P D = 2 A B C = 12 0 \angle APD = 2\angle ABC = 120^\circ , therefore A P D \triangle APD is an isosceles triangle congruent to A C D \triangle ACD , implying that the radius of the circle is a a .

To find a a , we note that A D = 2 a cos 3 0 = 3 a AD = 2a\cos 30^\circ = \sqrt 3 a . By cosine rule ,

( 3 a ) 2 = 1 0 2 + 1 2 2 2 ( 10 ) ( 12 ) cos 6 0 3 a 2 = 124 a = 2 31 3 \begin{aligned} (\sqrt 3a)^2 & = 10^2 + 12^2 - 2(10)(12)\cos 60^\circ \\ 3a^2 & = 124 \\ \implies a & = 2\sqrt{\frac {31}3} \end{aligned}

Area of the shaded region is given by:

A = A A A B D A A C D = π a 2 1 2 ( 10 ) ( 12 ) sin 6 0 1 2 a 2 sin 12 0 = 124 3 π 30 3 31 3 3 = 124 3 π 121 3 \begin{aligned} A & = A_{\bigcirc} - A_{\triangle ABD} - A_{\triangle ACD} \\ & = \pi a^2 - \frac 12 (10)(12)\sin 60^\circ - \frac 12 a^2 \sin 120^\circ \\ & = \frac {124}3 \pi - 30\sqrt 3 - \frac {31\sqrt 3}3 \\ & = \frac {124}3 \pi - \frac {121}{\sqrt 3} \end{aligned}

Therefore a + b + c = 124 + 3 + 121 = 248 a+b+c = 124+3+121 = \boxed{248} .

Let the radius of the circle be r r and the angle P B C \angle {PBC} be α α . Then

2 r cos ( 30 ° + α ) = 10 r ( 3 cos α sin α ) = 10 2r\cos (30\degree+α)=10\implies r(\sqrt 3\cos α-\sin α)=10

2 r cos ( 30 ° α ) = 12 r ( 3 cos α + sin α ) = 12 2r\cos (30\degree-α)=12\implies r(\sqrt 3\cos α+\sin α)=12

From these we get r 2 = 124 3 , tan α = 3 11 r^2=\dfrac{124}{3}, \tan α=\dfrac{\sqrt 3}{11} .

Hence tan ( 30 ° α ) = 2 3 3 \tan (30\degree-α)=\dfrac{2}{3\sqrt 3} and tan ( 30 ° + α ) = 7 5 3 \tan (30\degree+α)=\dfrac{7}{5\sqrt 3} .

Total area of bottom two regions is 2 × ( π r 2 6 3 r 2 4 ) = π r 2 3 3 r 2 2 = π r 2 3 62 3 2\times (\dfrac{πr^2}{6}-\dfrac{\sqrt 3r^2}{4})=\dfrac{πr^2}{3}-\dfrac{\sqrt 3r^2}{2}=\dfrac{πr^2}{3}-\dfrac{62}{\sqrt 3} .

Area of top left region is r 2 ( 2 π 3 2 α ) 2 25 tan ( 30 ° + α ) \dfrac{r^2(\dfrac{2π}{3}-2α)}{2}-25\tan (30\degree+α) .

Area of top right region is r 2 ( 2 π 3 + 2 α ) 2 36 tan ( 30 ° α ) \dfrac{r^2(\dfrac{2π}{3}+2α)}{2}-36\tan (30\degree-α) .

Sum of these two is 2 π r 2 3 59 3 \dfrac{2πr^2}{3}-\dfrac{59}{\sqrt 3} .

Therefore the total area is π r 2 121 3 = 124 π 3 121 3 πr^2-\dfrac{121}{\sqrt 3}=\dfrac{124π}{3}-\dfrac{121}{\sqrt 3} .

So a = 124 , b = 3 , c = 121 a=124,b=3, c=121 and a + b + c = 248 a+b+c=\boxed {248} .

Rocco Dalto
Mar 23, 2020

m A B C = 3 0 = m C B D m ( A C ) = 6 0 = m ( C D ) m\angle{ABC} = 30^{\circ} = m\angle{CBD} \implies m(\stackrel\frown{AC}) = 60^{\circ} = m(\stackrel\frown{CD}) \implies A C C D \overline{AC} \cong \overline{CD} .

100 + x 2 10 3 x = 144 + x 2 12 3 x 2 3 x = 44 x = 22 3 \implies 100 + x^2 - 10\sqrt{3}x = 144 + x^2 - 12\sqrt{3}x \implies 2\sqrt{3}x = 44 \implies x = \dfrac{22}{\sqrt{3}} .

h 1 = 10 sin ( 3 0 ) = 5 h_{1} = 10\sin(30^{\circ}) = 5 and h 2 = 12 sin ( 3 0 ) = 6 h_{2} = 12\sin(30^{\circ}) = 6 \implies A 1 = 1 2 ( 22 3 ) ( 5 ) = 55 3 A_{1} = \dfrac{1}{2}(\dfrac{22}{\sqrt{3}})(5) = \dfrac{55}{\sqrt{3}} and

A 2 = 66 3 A T = A 1 + A 2 = 121 3 A_{2} = \dfrac{66}{\sqrt{3}} \implies A_{T} = A_{1} + A_{2} = \dfrac{121}{\sqrt{3}} .

Assigning coordinates we have:

r 2 = x 0 2 + ( y 0 5 3 ) 2 r^2 = x_{0}^2 + (y_{0} - 5\sqrt{3})^2

r 2 = x 0 2 + ( y 0 + 7 3 ) 2 r^2 = x_{0}^2 + (y_{0} + \dfrac{7}{\sqrt{3}})^2

\implies 44 3 y 0 = 176 3 y 0 = 4 3 \dfrac{44}{\sqrt{3}}y_{0} = \dfrac{176}{3} \implies y_{0} = \dfrac{4}{\sqrt{3}}

and

r 2 = ( x 0 6 ) 2 + ( y 0 + 3 ) 2 r^2 = (x_{0} - 6)^2 + (y_{0} + \sqrt{3})^2

r 2 = x 0 2 + ( y 0 + 7 3 ) 2 r^2 = x_{0}^2 + (y_{0} + \dfrac{7}{\sqrt{3}})^2

using y 0 = 4 3 y_{0} = \dfrac{4}{\sqrt{3}} \implies

x 0 2 12 x 0 + 36 + 49 3 = r 2 x_{0}^2 - 12x_{0} + 36 + \dfrac{49}{3} = r^2

x 0 2 + 121 3 = r 2 x_{0}^2 + \dfrac{121}{3} = r^2

12 x 0 + 12 = 0 x 0 = 1 P ( 1 , 4 3 ) r 2 = 121 3 + 1 = \implies -12x_{0} + 12 = 0 \implies x_{0} = 1 \implies P(1,\dfrac{4}{\sqrt{3}}) \implies r^2 = \dfrac{121}{3} + 1 = 124 3 \dfrac{124}{3}

r = 2 31 3 \implies r = 2\sqrt{\dfrac{31}{3}} \implies Area of the circle A c = 124 3 π A_{c} = \dfrac{124}{3}\pi and A T = 121 3 A_{T} = \dfrac{121}{\sqrt{3}} \implies

The desired shaded area A = A c A T = 124 3 π 121 3 = A = A_{c} - A_{T} = \dfrac{124}{3}\pi - \dfrac{121}{\sqrt{3}} = a b π c b \dfrac{a}{b}\pi - \dfrac{c}{\sqrt{b}} \implies

a + b + c = 248 a + b + c = \boxed{248}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...