Area of infinite circles

Geometry Level 4

In the figure above :

  • A D \overline{ AD } and A C \overline{ AC } are tangent to all circles

  • the radius of circle O is 2

  • A O \overline{ AO } is 9

  • the shaded area can be written as a b π \frac{a}{b} \pi where a and b are coprime integer

find a+b ?


The answer is 139.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hassan Abdulla
Dec 25, 2017

if we take any adjacent circle like above we will get a similar triangles

a b c A C O \triangle abc \sim \triangle ACO

A O a c = C O b c \Rightarrow \frac { \overline { AO } }{ \overline { ac } } =\frac { \overline { CO } }{ \overline { bc } }

9 r n + r n + 1 = 2 r n r n + 1 \Rightarrow \frac { 9 }{ { r }_{ n }+{ r }_{ n+1 } } =\frac { 2 }{ { r }_{ n }-{ r }_{ n+1 } } since { a c = r n + r n + 1 b c = r n r n + 1 \begin{cases} \overline { ac } ={ r }_{ n }+{ r }_{ n+1 } \\ \overline { bc } ={ r }_{ n }-{ r }_{ n+1 } \end{cases}

r n + 1 = 7 11 r n \Rightarrow { r }_{ n+1 }=\frac { 7 }{ 11 } { r }_{ n }

Now

r 1 = 2 , r 2 = 2 ( 7 11 ) 1 , r 2 = 2 ( 7 11 ) 2 , . . . . . , r n = 2 ( 7 11 ) n 1 { r }_{ 1 }=2\quad ,\quad { r }_{ 2 }=2{ \left( \frac { 7 }{ 11 } \right) }^{ 1 }\quad ,\quad { r }_{ 2 }=2{ \left( \frac { 7 }{ 11 } \right) }^{ 2 },.....,{ r }_{ n }=2{ \left( \frac { 7 }{ 11 } \right) }^{ n-1 }

the Area of a circle A n = π ( r n ) 2 = 4 π ( 49 121 ) n 1 { A }_{ n }=\pi { \left( { r }_{ n } \right) }^{ 2 }=4\pi { \left( \frac { 49 }{ 121 } \right) }^{ n-1 }

the sum of all circles

n = 1 A n = 4 π n = 1 ( 49 121 ) n 1 = 4 π 1 49 121 = 121 18 π \sum _{ n=1 }^{ \infty }{ { A }_{ n } } =4\pi \sum _{ n=1 }^{ \infty }{ { \left( \frac { 49 }{ 121 } \right) }^{ n-1 } } =\frac { 4\pi }{ 1-\frac { 49 }{ 121 } } =\frac { 121 }{ 18 } \pi

a+b = 121 + 18 = 139

another Solution

A P R A S N \triangle APR \sim \triangle ASN

so the Area of the shaded Area is similar

a r e a o f c i r c l e i n A P R a r e a o f c i r c l e i n A N S = ( A J A G ) 2 \Rightarrow \frac { area\quad of\quad circle\quad in\quad \triangle APR }{ area\quad of\quad circle\quad in\quad \triangle ANS } =\left ({\frac {AJ}{AG}} \right )^{2}

let the area of circles in A N S \triangle ANS = α \alpha

so the area of circles in A P R \triangle APR = α 4 π \alpha -4\pi

α 4 π α = 7 2 11 2 α = 121 18 π \Rightarrow \frac { \alpha -4\pi }{ \alpha } =\frac { { 7 }^{ 2 } }{ { 11 }^{ 2 } } \Rightarrow \alpha =\frac { 121 }{ 18 } \pi

a+b = 121 + 18 = 139

It should be A G 2 AG^{2} unless you mean the whole fraction has been squared.

A Former Brilliant Member - 3 years, 5 months ago

In my diagram above A O D A P Q \triangle AOD \sim \triangle APQ . Then we have the following relation:

r 1 r 2 = A O A P \displaystyle{\frac{r_1}{r_2}=\frac{\overline{AO}}{\overline{AP}}}

2 r 2 = 9 9 2 r 2 \displaystyle{\frac{2}{r_2}=\frac{9}{9-2-r_2}}

Solving for r 2 r_2 :

2 r 2 = 9 7 r 2 \displaystyle{\frac{2}{r_2}=\frac{9}{7-r_2}}

9 r 2 = 14 2 r 2 \displaystyle{9r_2=14-2r_2}

11 r 2 = 14 \displaystyle{11r_2=14}

r 2 = 14 11 \displaystyle{r_2=\frac{14}{11}}

Since all the circles are tangent two by two, and they are also tangent to the segment A D \overline{AD} , all the radii of adjacent circles starting from r 1 r_1 are decreasing in the same ratio. This ratio is 14 11 2 = 7 11 \displaystyle{\frac{\frac{14}{11}}{2}=\frac{7}{11}} .

The ratio of the areas of two circles is the same as the ratio of their radii squared. Then the area of echa circle starting from the circle with radius r 1 r_1 is decreasing in the ratio of 49 121 \displaystyle{\frac{49}{121}} .

The sum of the areas of all circles will be the sum of the infinite terms of an Geometric Progression with first term 4 π 4\pi and common ratio 49 121 \frac{49}{121} . The sum will be:

S = 4 π 1 49 121 \displaystyle{S=\frac{4 \pi}{1-\frac{49}{121}}}

S = 4 π 72 121 \displaystyle{S=\frac{4 \pi}{\frac{72}{121}}}

S = 484 π 72 = 121 π 18 \displaystyle{S=\frac{484 \pi}{72}=\frac{121 \pi}{18}}

Then the sum is 121 18 π \boxed{\frac{121}{18}\pi} , and the answer for this question is a + b = 121 + 18 = 139 \boxed{a+b=121+18=139}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...