Area of My Valentine

Calculus Level 5

Find the area of the heart-shaped region bounded by the equation x 2 + ( 5 y 4 x ) 2 = 1 x^2 + \left(\dfrac{5y}{4} - \sqrt{|x|}\right)^2 = 1 to six decimal places.


The answer is 2.513274.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 18, 2018

Since the heart curve is even, we need only consider the positive x x half of the curve and then multiply the result by 2. Then we have:

x 2 + ( 5 y 4 x ) 2 = 1 For x 0 x = x x 2 + ( 5 y 4 x ) 2 = 1 5 y 4 x = ± 1 x 2 y = 4 5 ( x ± 1 x 2 ) \begin{aligned} x^2 + \left(\frac {5y}4-\sqrt{\color{#3D99F6}|x|}\right)^2 & = 1 & \small \color{#3D99F6} \text{For }x \ge 0 |x| = x \\ x^2 + \left(\frac {5y}4-\sqrt{\color{#3D99F6}x}\right)^2 & = 1 \\ \frac {5y}4-\sqrt{x} & = \pm \sqrt{1 - x^2} \\ y & = \frac 45 \left(\sqrt x \pm \sqrt{1-x^2} \right) \end{aligned}

We note that y y has two parts y = 4 5 ( x + 1 x 2 ) y = \dfrac 45 \left(\sqrt x + \sqrt{1-x^2} \right) , the blue curve, and y = 4 5 ( x 1 x 2 ) y = \dfrac 45 \left(\sqrt x - \sqrt{1-x^2} \right) , the red curve. The area of half the heart A = 0 1 y d x A = \displaystyle \int_0^1 y\ dx also has two parts A 1 = 0 1 4 5 ( x + 1 x 2 ) d x A_1 = \displaystyle \int_0^1 \frac 45 \left(\sqrt x + \sqrt{1-x^2} \right) dx , the blue + + purple regions, and A 2 = 0 1 4 5 ( x 1 x 2 ) d x A_2 = \displaystyle \int_0^1 \frac 45 \left(\sqrt x - \sqrt{1-x^2} \right) dx , the pink + + purple regions. And that:

A = A 1 A 2 = 0 1 4 5 ( x + 1 x 2 ) d x 0 1 4 5 ( x 1 x 2 ) d x = 8 5 0 1 1 x 2 d x Let x = sin θ d x = cos θ d θ = 8 5 0 π 2 cos 2 θ d θ = 8 5 0 π 2 1 + cos 2 θ 2 d θ = 4 5 [ θ + sin 2 θ 2 ] 0 π 2 = 2 5 π \begin{aligned} A & = A_1 - A_2 \\ & = \int_0^1 \frac 45 \left(\sqrt x + \sqrt{1-x^2} \right) dx - \int_0^1 \frac 45 \left(\sqrt x - \sqrt{1-x^2} \right) dx \\ & = \frac 85 \int_0^1 \sqrt{1-x^2} \ dx & \small \color{#3D99F6} \text{Let }x = \sin \theta \implies dx = \cos \theta \ d\theta \\ & = \frac 85 \int_0^\frac \pi 2 \cos^2 \theta \ d\theta \\ & = \frac 85 \int_0^\frac \pi 2 \frac {1+\cos 2\theta}2 d\theta \\ & = \frac 45 \left[ \theta + \frac {\sin 2 \theta}2\right]_0^\frac \pi 2 \\ & = \frac 25 \pi \end{aligned}

Therefore, the area of the heart = 2 A = 4 5 π 2.513274 = 2A = \dfrac 45 \pi \approx \boxed{2.513274} .

Rocco Dalto
Feb 16, 2018

A 1 = 4 5 0 1 ( 1 x 2 + x 1 ) d x = 4 5 ( 0 π 2 cos 2 d θ + 0 1 x 1 d x ) = A_{1} = \dfrac{4}{5}\int_{0}^{1} (\sqrt{1 - x^2} + \sqrt{x} - 1) dx = \dfrac{4}{5}(\int_{0}^{\frac{\pi}{2}} \cos^{2} d\theta + \int_{0}^{1} \sqrt{x} - 1 dx) = 4 5 ( 1 2 ( θ + 1 2 sin ( 2 θ ) ) 0 π 2 + ( 2 3 x 3 2 x ) 0 1 ) = 4 5 ( π 4 1 3 ) \dfrac{4}{5} (\dfrac{1}{2}(\theta + \dfrac{1}{2} \sin(2\theta))|_{0}^{\frac{\pi}{2}} +(\dfrac{2}{3} x^{\frac{3}{2} } - x)|_{0}^{1}) = \dfrac{4}{5} (\dfrac{\pi}{4} - \dfrac{1}{3})

Similarly, A 2 = 4 5 0 1 ( 1 + 1 x 2 x ) d x = 4 5 ( 0 π 2 cos 2 d θ + 0 1 1 x d x ) = A_{2} = \dfrac{4}{5}\int_{0}^{1} (1 + \sqrt{1 - x^2} - \sqrt{x}) dx = \dfrac{4}{5}(\int_{0}^{\frac{\pi}{2}} \cos^{2} d\theta + \int_{0}^{1} 1 - \sqrt{x} dx) = 4 5 ( 1 2 ( θ + 1 2 sin ( 2 θ ) ) 0 π 2 + ( x 2 3 x 3 2 ) 0 1 ) = 4 5 ( π 4 + 1 3 ) \dfrac{4}{5} (\dfrac{1}{2}(\theta + \dfrac{1}{2} \sin(2\theta))|_{0}^{\frac{\pi}{2}} +(x - \dfrac{2}{3} x^{\frac{3}{2} })|_{0}^{1}) = \dfrac{4}{5} (\dfrac{\pi}{4} + \dfrac{1}{3})

A 1 + A 2 = 2 π 5 \implies A_{1} + A_{2} = \dfrac{2\pi}{5} \implies the area of the heart A = 2 ( A 1 + A 2 ) = 4 π 5 2.513274 A = 2(A_{1} + A_{2}) = \dfrac{4\pi}{5} \approx \boxed{2.513274} .

Since you want the sum A 1 + A 2 A_1 + A_2 , you can simply add the integrands 4 5 ( 1 x 2 + x 1 ) \frac{4}{5} (\sqrt{1 - x^2} + \sqrt{x} - 1) and 4 5 ( 1 x 2 x + 1 ) \frac{4}{5} (\sqrt{1 - x^2} - \sqrt{x} + 1) to get 8 5 1 x 2 \frac{8}{5} \sqrt{1 - x^2} , and take it from there.

Jon Haussmann - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...