Area of parallelogram

Algebra Level 3

Find the area of the parallelogram with vertices A = ( 2 , 1 , 3 ) , B = ( 0 , 4 , 3 ) , C = ( 4 , 2 , 3 ) , D = ( 2 , 1 , 3 ) . A=(-2, 1,3), B=(0, 4,3), C=(4, 2,3), D=(2, -1,3).


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Daniel Ferreira
Apr 26, 2015

Fixemos o ponto C, temos então: C D = ( 2 , 3 , 0 ) \vec{CD} = (- 2, - 3, 0) e C B = ( 4 , 2 , 0 ) \vec{CB} = (- 4, 2, 0) .

Ora, a área do paralelogramo é dada pelo módulo do produto vetorial...

Segue que,

C D C B = i j k 2 3 0 4 2 0 C D C B = 16 k C D C B = ( 0 , 0 , 16 ) \\ \vec{CD} \wedge \vec{CB} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ - 2 & - 3 & 0 \\ - 4 & 2 & 0 \end{vmatrix} \\\\\\ \vec{CD} \wedge \vec{CB} = - 16\vec{k} \\\\ \boxed{\vec{CD} \wedge \vec{CB} = (0, 0, - 16)}

Por fim,

C D C B = 0 + 0 + 1 6 2 S ABCD = 16 \\ | \vec{CD} \wedge \vec{CB} | = \sqrt{0 + 0 + 16^2} \\\\ \boxed{\boxed{\boxed{S_{\text{ABCD}} = 16}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...