area of polygon with 3-sides

Geometry Level 4

In triangle ABC, where A,B and C are the angles opposite to sides a,b,c where length of a=6 units, b=3 units, and cos(A-B)=0.8. Find the area of triangle.


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 17, 2014

Using Sine Rule, we have: sin A 6 = sin B 3 \quad \dfrac {\sin {A}}{6} = \dfrac {\sin {B}}{3} .

Let sin B = β \sin {B} = \beta , then sin A = 2 β \sin {A} = 2 \beta , cos A = 1 4 β 2 \cos {A} = \sqrt{1-4\beta^2} and cos B = 1 β 2 \cos {B} = \sqrt{1-\beta^2}

It is given that: cos A B = 0.8 cos A cos B + sin A sin B = 0.8 \quad \cos {A-B} = 0.8\quad \Rightarrow \cos {A} \cos {B} + \sin {A} \sin {B} = 0.8

1 4 β 2 1 β 2 + β ( 2 β ) = 0.8 \Rightarrow \sqrt{1-4\beta^2} \sqrt{1-\beta^2} + \beta (2 \beta) = 0.8

( 1 4 β 2 ) ( 1 β 2 ) = ( 0.8 2 β 2 ) 2 \quad (1-4\beta^2) (1-\beta^2) = (0.8 - 2 \beta^2)^2

1 5 β 2 + 4 β 4 = 0.64 3.2 β 2 + 4 β 4 \quad 1-5\beta^2 + 4\beta^4 = 0.64 - 3.2 \beta^2 + 4\beta^4

1.8 β 2 = 0.36 β 2 = 0.36 1.8 = 1 5 β = 1 5 \Rightarrow 1.8 \beta^2 = 0.36 \quad \Rightarrow \beta^2 = \frac {0.36}{1.8} = \frac {1}{5} \quad \Rightarrow \beta = \frac {1}{\sqrt{5}}

cos A = 2 5 cos B = 1 5 sin A = 1 4 5 = 1 5 sin B = 1 1 5 = 2 5 \Rightarrow \cos {A} = \frac {2}{\sqrt{5}}\quad \cos {B} = \frac {1}{\sqrt{5}} \quad \sin {A} = \sqrt{1 - \frac {4}{5}} = \frac {1}{\sqrt{5}} \quad \sin {B} = \sqrt{1 - \frac {1}{5}} = \frac {2}{\sqrt{5}}

Now C = 18 0 A B C = 180^\circ - A - B . Let us check what A + B A+B is.

cos A + B = cos A cos B sin A sin B = 2 5 × 1 5 1 5 × 2 5 = 0 \cos {A+B} = \cos {A} \cos {B} - \sin {A} \sin {B} = \frac {2}{\sqrt{5}}\times \frac {1}{\sqrt{5}} - \frac {1}{\sqrt{5}}\times \frac {2}{\sqrt{5}} = 0

A + B = 9 0 \Rightarrow A+B = 90^\circ , C = 9 0 C = 90^\circ and A B C \triangle ABC is a right-angle triangle and its area = 1 2 × 3 × 6 = 9 = \frac {1}{2}\times 3\times 6 = \boxed {9} .

very nice solution sir

will jain - 6 years, 6 months ago

Log in to reply

Thanks. Just trying my best.

Chew-Seong Cheong - 6 years, 6 months ago
Karan Pedja
Jan 10, 2015

You could do it with Law of Tangents

a + b a b = t a n α + β 2 t a n α β 2 \frac{a+b}{a-b} = \frac {tan \frac{\alpha + \beta}{2}}{tan \frac{\alpha - \beta}{2}}

We have

t a n α β 2 = 1 c o s ( α β ) 1 + c o s ( α β ) = 1 4 / 5 1 + 4 / 5 = 1 3 tan\frac{\alpha - \beta}{2} = \sqrt{\frac {1-cos(\alpha - \beta)}{1+cos(\alpha - \beta)}} = \sqrt {\frac{1-4/5}{1+4/5}}=\frac{1}{3}

Now 6 + 3 6 3 = c o t γ / 2 1 / 3 \frac{6+3}{6-3} = \frac{cot \gamma /2}{1/3}

So c o t ( γ / 2 ) = 1 cot (\gamma /2)=1\ , therefore γ / 2 = π / 4 \gamma/2 = \pi/4 and γ = π / 2 \gamma =\pi/2 ie that triangle is right-angled

As we know area of the right-angled triangle a r e a = a × b / 2 = 18 / 2 = 9 area = a \times b /2 =18/2 =9

good approach...

Vighnesh Raut - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...