Area of surface of revolution of a cuboid about its space diagonal

Geometry Level 5

A cuboid measures 10 × 15 × 30 10 \times 15 \times 30 . Find the area of the surface of revolution of the cuboid about its space diagonal, rounded to the nearest integer.

Note: This problem is best solved using a computer program.


The answer is 3669.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jul 16, 2020

Label the vertices of the cuboid A ( 0 , 0 , 0 ) A\;(0,0,0) , B ( 10 , 0 , 0 ) B\;(10,0,0) , C ( 0 , 15 , 0 ) C\;(0,15,0) , D ( 10 , 15 , 0 ) D\;(10,15,0) , E ( 0 , 0 , 30 ) E\;(0,0,30) , F ( 10 , 0 , 30 ) F\;(10,0,30) , G ( 0 , 15 , 30 ) G\;(0,15,30) , H ( 10 , 15 , 30 ) H\;(10,15,30) . If 0 t 35 0 \le t \le 35 is the distance along the space axis A H AH , with t = 0 t=0 corresponding to the point A A , let F X Y ( t ) F_{XY}(t) be equal to the perpendicular distance of the line segment X Y XY from the space axis at the point a distance t t along the space axis (or be equal to 0 0 if no portion of the line segment X Y XY exists at that point. Then F X Y ( t ) = { r X Y ( t ) 2 ( r X Y ( t ) n ) 2 A X n t A Y n 0 o . w . F_{XY}(t) \; = \; \left\{\begin{array}{lll} \sqrt{\left|\mathbf{r}_{XY}(t)\right|^2 - \left(\mathbf{r}_{XY}(t)\cdot \mathbf{n}\right)^2} & \hspace{1cm} & \overrightarrow{AX}\cdot \mathbf{n} \le t \le \overrightarrow{AY}\cdot\mathbf{n} \\ 0 & & \mathrm{o.w.}\end{array}\right. where r X Y ( t ) = 1 X Y n [ ( A Y n t ) A X + ( t A X n ) A Y ] \mathbf{r}_{XY}(t) \; = \; \frac{1}{\overrightarrow{XY}\cdot{n}}\left[\left(\overrightarrow{AY}\cdot \mathbf{n} - t\right)\overrightarrow{AX} + \left(t - \overrightarrow{AX} \cdot \mathbf{n}\right)\overrightarrow{AY}\right] and n = 1 7 ( 2 3 6 ) \mathbf{n} \; =\; \frac{1}{7}\left(\begin{array}{c} 2 \\ 3 \\ 6 \end{array}\right) is a unit vector pointing along the space axis.

If we plot F A B F_{AB} , F A C F_{AC} , F A E F_{AE} , F B D F_{BD} , F B F F_{BF} , F C D F_{CD} , F C G F_{CG} , F E F F_{EF} , F E G F_{EG} , F D H F_{DH} , F F H F_{FH} and F G H F_{GH} against t t , we obtain a picture of the profile of the solid of the revolution of the cuboid, in that the maximum of these twelve functions is what is rotated about the t t axis to obtain the solid of revolution. Thus the solid of revolution is the volume of revolution of the function G G about the t t -axis, where G ( t ) = { F A B ( t ) 0 t 20 7 F B D ( t ) 20 7 t 65 14 F A C ( t ) 65 14 t 45 7 F C D ( t ) 45 7 t 65 7 F D H ( t ) 65 7 t 35 2 G ( 35 t ) 35 2 t 35 G(t) \; = \; \left\{ \begin{array}{lll} F_{AB}(t) & \hspace{1cm} & 0 \le t \le \tfrac{20}{7} \\ F_{BD}(t) & & \tfrac{20}{7} \le t \le \tfrac{65}{14} \\ F_{AC}(t) & & \tfrac{65}{14} \le t \le \tfrac{45}{7} \\ F_{CD}(t) & & \tfrac{45}{7} \le t \le \tfrac{65}{7} \\ F_{DH}(t) & & \tfrac{65}{7} \le t \le \tfrac{35}{2} \\ G(35-t) & & \tfrac{35}{2} \le t \le 35 \end{array}\right.

To calculate the surface of revolution, we need to evaluate S = 0 35 2 π G ( t ) 1 + G ( t ) 2 d t \mathcal{S} \; = \; \int_0^{35} 2\pi G(t) \sqrt{1 + G'(t)^2}\,dt which is a relatively straightforward piecewise integral, equal to 1 504 [ 84240 π + 43200 5 π + 31000 10 π + 69575 13 π + 640 394 π + 5832 10 π sinh 1 ( 1 3 ) + 6912 5 π sinh 1 ( 1 2 ) + 5832 10 π sinh 1 ( 16 27 ) + 6912 5 π sinh 1 ( 2 ) ] \frac{1}{504}\left[\begin{array}{l}84240 \pi + 43200 \sqrt{5} \pi + 31000 \sqrt{10} \pi + 69575 \sqrt{13} \pi + 640 \sqrt{394} \pi \\ + 5832 \sqrt{10} \pi \sinh^{-1}(\tfrac13) + 6912 \sqrt{5} \pi \sinh^{-1}(\tfrac12) + 5832 \sqrt{10} \pi \sinh^{-1}(\tfrac{16}{27}) + 6912 \sqrt{5}\pi \sinh^{-1}(2)\end{array}\right] which rounds to 3669 \boxed{3669} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...