Area, Perimeter and Quadrilateral

Geometry Level 5

This problem is from the OMO.

Let A B C D ABCD be a quadrilateral with A D = 20 AD = 20 and B C = 13 BC = 13 . The area of A B C ABC is 338 338 and the area of D B C DBC is 212 212 . Compute the smallest possible perimeter of A B C D ABCD .


The answer is 118.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zi Song Yeoh
Sep 17, 2014

Let X X and Y Y be the feet of the altitudes from A A and D D to B C BC . By the area condition, A X = 676 13 AX = \frac{676}{13} and D Y = 424 13 DY = \frac{424}{13} . Let Z Z be a point such that A X Y Z AXYZ form a rectangle. Thus, X Y = A Z = A D 2 ( Z Y D Y ) 2 = A D 2 ( A X D Y ) 2 = 400 ( 252 13 ) 2 = 64 13 XY = AZ = \sqrt{AD^2 - (ZY - DY)^2} = \sqrt{AD^2 - (AX - DY)^2} = \sqrt{400 - (\frac{252}{13})^2} = \frac{64}{13} .

Let E E be the reflection of D D over Y Y and F F be the point such that B C E F BCEF is a parallelogram. Then it’s easy to compute that

A F 2 = ( X Y B C ) 2 + ( A X + D Y ) 2 = ( 105 13 ) 2 + ( 1100 13 ) 2 = 7225 = 8 5 2 AF^2 = (XY - BC)^2 + (AX + DY)^2 = (\frac{105}{13})^2 + (\frac{1100}{13})^2 = 7225 = 85^2 .

Thus, A B + C D = A B + C E = A B + B F A F = 85 AB + CD = AB + CE = AB + BF \ge AF = 85 , with equality if and only if A , B , F A, B, F are collinear. Thus, the minimum possible perimeter of A B C D ABCD is 85 + 20 + 13 = 118 85 + 20 + 13 = \boxed{118} .

Hey Zi Song Yeoh Check This:

A B = y B C = 13 C D = x A D = 20 AB=y\quad \\ BC=13\\ CD=x\\ AD=20 .

Now By using given Area conditions we obtain Relation for 'x' and 'y'

x = 424 13 sin C y = 52 sin B x=\frac { 424 }{ 13\sin { C } } \\ y=\frac { 52 }{ \sin { B } } .

Now Perimeter of Quadrilateral ABCD is

P = 13 + 20 + x + y P = 33 + 424 13 sin C + 52 sin B P=\quad 13+20+x+y\\ P=\quad 33+\frac { 424 }{ 13\sin { C } } +\frac { 52 }{ \sin { B } } \\ .

For Minimum Perimeter Denominator containing angles should Be maximum. Since

sin B m a x = sin C m a x = 1 { \sin { B } }_{ max }\quad =\quad { \sin { C } }_{ max }\quad =\quad 1\\ .

which ocures when B = C = 90 0 B=C={ 90 }^{ 0 } .

i.e Quadrilateral becomes Trapazium.

P m i n = 117.6 { P }_{ min }=\quad 117.6 .

From my side this is minimum value . Please Correct me if I'am wrong.

Deepanshu Gupta - 6 years, 8 months ago

Log in to reply

Can you define the quadrilateral exactly? Just because you gave some side lengths and some angles, doesn't necessarily mean that you have defined a quadrilateral.

As an explicit example of what I mean, there is no quadrilaterial where A B = 1 , B C = 2 , C D = 3 , D A = 4 , A B C = 9 0 , B C D = 9 0 AB = 1, BC = 2, CD = 3, DA = 4, \angle ABC = 90^\circ, \angle BCD = 90 ^ \circ .

The reason is that this system is overdefined, and there is a contradiction somewhere.

Calvin Lin Staff - 6 years, 8 months ago

Log in to reply

Now I get it...!! Since to make an Right angle Trapezium in my solution Condition is That x y + 13 > 20 x-y+13>20 . (According to triangle inequality in a triangle which is formed from by droping the perpendicular from A to CD ).

Which is Violated if I assumed That angle B =angle C =90 degree.

Since x=424/13 , y= 52 , which Don't Satisfy The inequality.

Hence Quadrilateral is not formed..... Am I right ??

Deepanshu Gupta - 6 years, 8 months ago
Rahul Dandwate
Oct 8, 2014

Let X X and Y Y be the feet of perpendicular from A A and D D to B C BC . By using the area of triangles given we get A X = 52 AX=52 and D Y = 424 13 DY=\frac { 424 }{ 13 } . Let Z Z be the foot of perpendicular from D D to A B AB . Thus,

D Z = X Y = A D 2 ( A X D Y ) 2 = 400 ( 252 13 ) 2 = 64 13 DZ=XY=\sqrt { { AD }^{ 2 }-{ (AX-DY) }^{ 2 } } =\sqrt { 400-{ (\frac { 252 }{ 13 } ) }^{ 2 } } =\frac { 64 }{ 13 }

Let B A X = β \angle BAX=\beta and C D Y = α \angle CDY=\alpha . And B X = l 1 BX={ l }_{ 1 } and C Y = l 2 CY={ l }_{ 2 } . Therefore, we get

13 = 64 13 + l 1 + l 2 13=\frac { 64 }{ 13 } +{ l }_{ 1 }+{ l }_{ 2 } 105 13 = l 1 + l 2 \Longrightarrow \frac { 105 }{ 13 } ={ l }_{ 1 }+{ l }_{ 2 }

As l 1 = 52 tan β { l }_{ 1 }=52\tan { \beta } and l 2 = 424 13 tan α { l }_{ 2 }=\frac { 424 }{ 13 } \tan { \alpha } .Thus,

52 tan β + 424 13 tan α = 105 13 52\tan { \beta } +\frac { 424 }{ 13 } \tan { \alpha } =\frac { 105 }{ 13 }

We have A B = 52 sec β AB=52\sec { \beta } and C D = 424 13 sec α CD=\frac { 424 }{ 13 } \sec { \alpha } . Now we want to find the minimum value of A B + C D AB+CD . Using Lagrange Multiplier,

Λ ( α , β , λ ) = 52 sec β + 424 13 sec α + λ ( 52 tan β + 424 13 tan α 105 13 ) \Lambda (\alpha ,\beta ,\lambda )=52\sec { \beta } +\frac { 424 }{ 13 } \sec { \alpha } +\lambda (52\tan { \beta } +\frac { 424 }{ 13 } \tan { \alpha } -\frac { 105 }{ 13 } )

We get λ = sin α = sin β -\lambda =\sin { \alpha } =\sin { \beta } . Therefore, α = β \alpha =\beta (as α < 90 \alpha <90 and β < 90 \beta <90 ).

Now solving for α \alpha and then using it, we find A B + C D = 85 AB+CD=85

Hence, the minimum perimeter of the quadrilateral is 20 + 13 + 85 = 118 20+13+85=\boxed{118} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...