Area Problem 2

Calculus Level 4

Let x < 1 |x| < 1 and e e be Euler's number .

Let m ( x ) = lim n [ ( j = 1 n x j j = 1 n ( j n ) n x n j ) ( j = 1 n ( 1 ) n j ( j n ) n x n j ) j = 1 n ( 1 ) j + 1 x j ) ] m(x) = \lim_{n \rightarrow \infty} \left[\left(\dfrac{\sum_{j = 1}^{n} x^{j}}{\sum_{j = 1}^{n} (\dfrac{j}{n})^n x^{n - j}}\right) * \left(\dfrac{\sum_{j = 1}^{n} (-1)^{n - j} (\dfrac{j}{n})^n x^{n - j})}{\sum_{j = 1}^{n} (-1)^{j + 1} x^{j}}\right)\right] and p ( x ) = a x 2 + b x + c p(x) = ax^2 + bx + c , where lim x 0 m ( x ) = lim x 0 p ( x ) , m ( 2 e ) = p ( 2 e ) \lim_{x \rightarrow 0} m(x) =\lim_{x \rightarrow 0} p(x), \:\ m(2 - e) = p(2 - e) and

2 e 0 m ( x ) d x = 2 e 0 p ( x ) d x \int_{2 - e}^{0} m(x) dx = \int_{2 - e}^{0} p(x) dx .

Find the area of the region bounded by m ( x ) m(x) and p ( x ) p(x) on [ 0 , e 2 ] [0,e - 2] to seven decimal places.


The answer is 0.2606294.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jun 2, 2018

lim n j = 1 n ( j n ) n x n j = j = 0 n 1 ( 1 j n ) n x j = n = 0 ( x e ) n = e e x \lim_{n \rightarrow \infty} \sum_{j = 1}^{n} (\dfrac{j}{n})^n x^{n - j} = \sum_{j = 0}^{n - 1} (1 - \dfrac{j}{n})^{n} x^{j} = \sum_{n = 0}^{\infty} (\dfrac{x}{e})^n = \dfrac{e}{e - x} on x < e |x| < e

lim n j = 1 n x j j = 1 n ( j n ) n x n j = ( x 1 x ) ( e x e ) = x ( e x ) e ( 1 x ) \implies \lim_{n \rightarrow \infty} \dfrac{\sum_{j = 1}^{n} x^{j}}{\sum_{j = 1}^{n} (\dfrac{j}{n})^n x^{n - j}} = (\dfrac{x}{1 - x})(\dfrac{e - x}{e}) = \boxed{\dfrac{x(e - x)}{e(1 - x)}} on x < 1 |x| < 1

n = 1 ( 1 ) n + 1 x n n = 0 ( 1 ) n ( x e ) n = \implies \dfrac{\sum_{n = 1}^{\infty} (-1)^{n + 1} x^n}{\sum_{n = 0}^{\infty} (-1)^n (\dfrac{x}{e})^n} = n = 1 ( x ) n n = 0 ( x e ) n = \dfrac{-\sum_{n = 1}^{\infty} (-x)^n}{\sum_{n = 0}^{\infty} (\dfrac{-x}{e})^n} = x ( e + x ) e ( 1 + x ) \dfrac{x(e + x)}{e(1 + x)} on x < 1 |x| < 1

( j = 1 n ( 1 ) n j ( j n ) n x n j ) j = 1 n ( 1 ) j + 1 x j ) = e ( 1 + x ) x ( e + x ) \implies (\dfrac{\sum_{j = 1}^{n} (-1)^{n - j} (\dfrac{j}{n})^n x^{n - j})}{\sum_{j = 1}^{n} (-1)^{j + 1} x^{j}}) = \boxed{\dfrac{e(1 + x)}{x(e + x)}} on x < 1 |x| < 1

m ( x ) = ( e x ) ( 1 + x ) ( 1 x ) ( e + x ) \implies m(x) = \dfrac{(e - x)(1 + x)}{(1 - x)(e + x)} .

lim x 0 m ( x ) = lim x 0 p ( x ) = 1 c = 1 \lim_{x \rightarrow 0} m(x) =\lim_{x \rightarrow 0} p(x) = 1 \implies c = 1 and m ( 2 e ) = p ( 2 e ) = 3 e ( 2 e ) a + b = 1 m(2 - e) = p(2 - e) = 3 - e \implies \boxed{(2 - e)a + b = 1} .

For 2 e 0 m ( x ) d x \int_{2 - e}^{0} m(x) dx :

m ( x ) = ( e x ) ( 1 + x ) ( 1 x ) ( e + x ) = x 2 ( e 1 ) x e x 2 + ( e 1 ) x e = m(x) = \dfrac{(e - x)(1 + x)}{(1 - x)(e + x)} = \dfrac{x^2 - (e - 1)x - e}{x^2 + (e - 1)x - e} = 1 + 2 ( e 1 ) x ( 1 x ) ( e + 1 ) 1 + \dfrac{2(e - 1)x}{(1 - x)(e + 1)}

Using partial fractions we obtain:

( A B ) x + ( e A + B ) = 2 ( e 1 ) x (A - B)x + (eA + B) = 2(e - 1)x \implies

A B = 2 ( e 1 ) A - B = 2(e - 1)

e A + B = 0 eA + B = 0

A = 2 ( e 1 ) 1 + e \implies A = \dfrac{2(e - 1)}{1 + e} and B = 2 e ( e 1 ) 1 + e B = \dfrac{-2e(e - 1)}{1 + e} \implies m ( x ) = 1 + ( 2 ( e 1 ) 1 + e ) ( 1 1 x e e + x ) m(x) = 1 + (\dfrac{2(e - 1)}{1 + e}) * (\dfrac{1}{1 - x} - \dfrac{e}{e + x}) \implies

2 e 0 m ( x ) d x = x 2 ( e 1 ) 1 + e ( ln ( ( 1 x ) ( e + x ) e ) 2 e 0 = e 2 + e 2 + 2 ( e 1 ) ln ( ( e 1 ) 2 e ) 1 + e = 2 e 0 p ( x ) d x \int_{2 - e}^{0} m(x) dx = x - \dfrac{2(e - 1)}{1 + e}(\ln((1 - x)(e + x)^e)|_{2 - e}^{0} = \dfrac{-e^2 + e - 2 + 2(e - 1)\ln((e - 1)2^e)}{1 + e} = \int_{2 - e}^{0} p(x) dx

e 2 + e 2 + 2 ( e 1 ) ln ( ( e 1 ) 2 e ) 1 + e = 1 6 ( 2 a x 3 + 3 b x 2 + 6 x ) 2 e 0 \implies \dfrac{-e^2 + e - 2 + 2(e - 1)\ln((e - 1)2^e)}{1 + e} = \dfrac{1}{6}(2ax^3 + 3bx^2 + 6x)|_{2 - e}^{0} \implies 2 ( 2 e ) 2 a + 3 ( 2 e ) + 6 = 6 ( e 2 + e 2 + 2 ( e 1 ) ln ( ( e 1 ) 2 e ) ) ( e + 1 ) ( e 2 ) 2(2 - e)^2a + 3(2 - e) + 6 = \dfrac{6(-e^2 + e - 2 + 2(e - 1)\ln((e - 1)2^e))}{(e + 1)(e - 2)} \implies

2 ( 2 e ) a + 3 b = 12 ( e 2 e ( e 1 ) ln ( ( e 1 ) 2 e ) ) ( e + 1 ) ( e 2 ) 2 \boxed{2(2 - e)a + 3b = \dfrac{12(e^2 -e - (e - 1)\ln((e - 1)2^e))}{(e + 1)(e - 2)^2}}

and

( 2 e ) a + b = 1 \boxed{(2 - e)a + b = 1}

Solving the system we obtain:

b = 2 e 3 + 18 e 2 12 e 8 12 ( e 1 ) ln ( ( e 1 ) 2 e ) ( e + 1 ) ( e 2 ) 2 b = \dfrac{-2e^3 + 18e^2 - 12e - 8 - 12(e - 1)\ln((e - 1)2^e)}{(e + 1)(e - 2)^2}

and

a = 3 e 3 + 21 e 2 12 e 12 12 ( e 1 ) ln ( ( e 1 ) 2 e ) ( e + 1 ) ( e 2 ) 3 a = \dfrac{-3e^3 + 21e^2 - 12e - 12 - 12(e - 1)\ln((e - 1)2^e)}{(e + 1)(e - 2)^3}

For 0 e 2 m ( x ) p ( x ) d x \int_{0}^{e - 2} m(x) - p(x) dx .

0 e 2 m ( x ) d x = x 2 ( e 1 ) 1 + e ( ln ( ( 1 x ) ( e + x ) e ) 0 e 2 = \int_{0}^{e - 2} m(x) dx = x - \dfrac{2(e - 1)}{1 + e}(\ln((1 - x)(e + x)^e)|_{0}^{e - 2} = e 2 2 ( e 1 ) 1 + e ln ( ( 3 e ) ( 2 e 2 ) e ) + 2 ( e 1 ) e 1 + e = e - 2 - \dfrac{2(e - 1)}{1 + e}\ln((3 - e)(2e - 2)^e) + \dfrac{2(e - 1)e}{1 + e} =

3 e 2 3 e 2 2 ( e 1 ) ln ( ( 3 e ) ( 2 e 2 ) e ) 1 + e 1.3000753 \boxed{\dfrac{3e^2 - 3e - 2 - 2(e - 1)\ln((3 - e)(2e - 2)^e)}{1 + e} \approx 1.3000753}

and

0 e 2 p ( x ) d x = 1 6 ( 2 a x 3 + 3 b x 2 + 6 x ) 0 e 2 = \int_{0}^{e - 2} p(x) dx = \dfrac{1}{6}(2ax^3 + 3bx^2 + 6x)|_{0}^{e - 2} = 6 e 3 + 42 e 2 24 e 24 24 ( e 1 ) ln ( ( e 1 ) 2 e ) + 6 e 3 + 54 e 2 36 e 24 36 ( e 1 ) ln ( ( e 1 ) 2 e ) + 6 e 2 6 e 12 6 ( e + 1 ) \dfrac{-6e^3 + 42e^2 - 24e - 24 - 24(e - 1)\ln((e - 1)2^e) + -6e^3 + 54e^2 - 36e - 24 - 36(e - 1)\ln((e - 1)2^e) + 6e^2 - 6e - 12}{6(e + 1)}

= 6 e 3 + 51 e 2 33 e 30 30 ( e 1 ) ln ( ( e 1 ) 2 e ) 3 ( e + 1 ) 1.0394459 = \boxed{\dfrac{-6e^3 + 51e^2 - 33e - 30 - 30(e - 1)\ln((e - 1)2^e)}{3(e + 1)} \approx 1.0394459}

0 e 2 m ( x ) p ( x ) d x 0.2606294 \implies \int_{0}^{e - 2} m(x) - p(x) dx \approx \boxed{0.2606294} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...