Area Problem.

Geometry Level 3

In the diagram above, rectangle A C D E ACDE and isosceles A B C \triangle{ABC} are of equal area and are inscribed in a circle of radius r = 1 r = 1 .

If the area of the pink regions A = arcsin ( a b c ) a b c A = \arcsin \left(\dfrac{a\sqrt{b}}{c} \right) - \dfrac{a\sqrt{b}}{c} , where a a , b b , and c c are positive coprime integers, find a + b + c a + b + c .


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 30, 2020

Let the height A D = C E = h AD=CE = h . Then the base of the triangle and rectangle A C = D E = 2 1 ( h 2 ) 2 = 4 h 2 AC=DE = 2\sqrt{1-\left(\dfrac h2\right)^2} = \sqrt{4-h^2} . Since the area of A B C \triangle ABC and the area of rectangle A C D E ACDE are equal, then

[ A B C ] = [ A C D E ] 1 2 ( 1 h 2 ) 4 h 2 = h 4 h 2 1 2 ( 1 h 2 ) = h 2 h = 4 h h = 2 5 \begin{aligned} [ABC] & = [ACDE] \\ \frac 12 \left(1-\frac h2\right)\sqrt{4-h^2} & = h\sqrt{4-h^2} \\ \frac 12 \left(1-\frac h2\right) & = h \\ 2 - h & = 4h \\ \implies h & = \frac 25 \end{aligned}

Let the center of the circle be O O . Then the area of the pink regions is

A = area of sector OABC area of A O C area of A B C = A O C 2 1 1 2 h 2 A C 1 2 ( 1 h 2 ) A C The radius of the circle = 1 = sin 1 ( 1 2 A C O C ) 1 2 A C = sin 1 ( 4 h 2 2 ) 4 h 2 2 = sin 1 ( 2 6 5 ) 2 6 5 \begin{aligned} A & = \text{area of sector OABC} - \text{area of }\triangle AOC - \text{area of }\triangle ABC \\ & = \frac {\angle AOC}2 \cdot \blue 1 - \frac 12 \cdot \frac h2 \cdot AC - \frac 12 \left(1-\frac h2\right) \cdot AC & \small \blue{\text{The radius of the circle }= 1} \\ & = \sin^{-1} \left(\frac {\frac 12 AC}{OC} \right) - \frac 12 \cdot AC \\ & = \sin^{-1} \left(\frac {\sqrt{4-h^2}}2 \right) - \frac {\sqrt{4-h^2}}2 \\ & = \sin^{-1} \left(\frac {2\sqrt 6}5 \right) - \frac {2\sqrt 6}5 \end{aligned}

Therefore a + b + c = 2 + 6 + 5 = 13 a+b+c = 2+6+5 = \boxed{13} .

Rocco Dalto
Nov 30, 2020

A A B C = 1 2 ( 1 x 2 ) y = A A C D E = x y 2 x = 4 x x = 2 5 A_{\triangle{ABC}} = \dfrac{1}{2}(1 - \dfrac{x}{2})y = A_{ACDE} = xy \implies 2 - x = 4x \implies x = \dfrac{2}{5}

1 5 = cos ( m ) \dfrac{1}{5} = \cos(m) and y 2 = cos ( π 2 m ) = sin ( m ) y = 2 sin ( m ) = 2 24 25 = 4 5 6 \dfrac{y}{2} = \cos(\dfrac{\pi}{2} - m) = \sin(m) \implies y = 2\sin(m) = 2\sqrt{\dfrac{24}{25}} = \dfrac{4}{5}\sqrt{6}

A A C D E = x y = 8 25 6 = A A B C \implies A_{ACDE} = xy = \dfrac{8}{25}\sqrt{6} = A_{\triangle{ABC}}

The area I I of the bounded circular region above the line y = 1 5 y = \dfrac{1}{5} and the circle

x 2 + y 2 = 1 x^2 + y^2 = 1 is:

I = 2 6 5 2 6 5 1 x 2 1 5 d x I = \int_{\frac{-2\sqrt{6}}{5}}^{\frac{2\sqrt{6}}{5}} \sqrt{1 - x^2} - \dfrac{1}{5} dx ,

Letting x = sin ( θ ) d x = cos ( θ ) x = \sin(\theta) \implies dx = \cos(\theta) \implies I = arcsin ( 2 6 5 ) 2 6 25 I = \arcsin(\dfrac{2\sqrt{6}}{5}) - \dfrac{2\sqrt{6}}{25} \implies

The desired area A = I 8 6 25 = arcsin ( 2 6 5 ) 2 6 5 A = I - \dfrac{8\sqrt{6}}{25} =\arcsin(\dfrac{2\sqrt{6}}{5}) - \dfrac{2\sqrt{6}}{5} = arcsin ( a b c ) a b c = \arcsin(\dfrac{a\sqrt{b}}{c}) - \dfrac{a\sqrt{b}}{c} \implies

a + b + c = 13 a + b + c = \boxed{13} .

Note: A A B C = 1 2 y ( 1 x 2 ) = 1 2 ( 4 5 6 ) ( 4 5 ) = 8 25 6 = x y A_{\triangle{ABC}} = \dfrac{1}{2}y(1 - \dfrac{x}{2}) = \dfrac{1}{2}(\dfrac{4}{5}\sqrt{6})(\dfrac{4}{5}) = \dfrac{8}{25}\sqrt{6} = xy

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...