Area swept by v ( t ) v ( 0 ) \mathbf{v}(t) - \mathbf{v}(0)

Calculus Level 5

Let v ( t ) = [ x ( t ) y ( t ) z ( t ) ] \mathbf{v}(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix}

If

d v ( t ) d t = A v ( t ) \dfrac{d\mathbf{v}(t)}{dt} =A \mathbf{v}(t)

where

A = [ 0.175 0 0.175 0.35 0.3 0.25 0.525 0 0.525 ] A = \begin{bmatrix} -0.175 && 0 && 0.175 \\ 0.35 && -0.3 && 0.25 \\ 0.525 && 0 && -0.525 \end{bmatrix}

And v ( 0 ) = [ 1 2 4 ] \mathbf{v}(0) = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}

Determine the area swept by the vector v ( t ) v ( 0 ) \mathbf{v}(t) - \mathbf{v}(0) from t = 0 t = 0 to t = t = \infty .


The answer is 0.3557.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Karan Chatrath
Sep 20, 2020

Here is my numerical attempt. Let the solution at time t t be r 1 = v ( t ) \vec{r}_1=\vec{v}(t) . Let the solution after a time t + δ t t + \delta t be r 2 = v ( t + δ t ) \vec{r}_2=\vec{v}(t+\delta t) . Using a little bit of imagination, the vectors r 1 v ( 0 ) \vec{r}_1 -\vec{v}(0) , r 2 v ( 0 ) \vec{r}_2-\vec{v}(0) and the elementary arc length vector joining these two vector tips form a triangle. The elementary area of the triangle is the area swept and is given by:

δ A S = ( r 1 v ( 0 ) ) × ( r 2 v ( 0 ) ) 2 \delta A_S = \frac{\lvert \left(\vec{r}_1 -\vec{v}(0)\right) \times \left(\vec{r}_2 -\vec{v}(0)\right)\rvert}{2} δ A S = ( v ( t ) v ( 0 ) ) × ( v ( t + δ t ) v ( 0 ) ) 2 \delta A_S = \frac{\lvert \left(\vec{v}(t) -\vec{v}(0)\right) \times \left(\vec{v}(t+\delta t)-\vec{v}(0)\right)\rvert}{2}

From here, I have just written a short script of code for the further evaluation:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
clear all
clc

% The A matrix:
A      = [-0.175 0 0.175;0.35 -0.3 0.25;0.525 0 -0.525];

% Initial conditions:
v(:,1) = [1;2;4];

% Time step and initialisation
dt     = 1e-5;
tf     = 50;
t      = 0:dt:tf;


% Numerical integration of ODE system:
for k = 1:length(t)-1

    v(:,k+1) = v(:,k) + dt*A*v(:,k);

end

% Swept area initialisation:
As = 0;

% Numerical integration to compute swept area:
for k = 1:length(t)-1

    dAs = norm(cross(v(:,k)-v(:,1),v(:,k+1)-v(:,1)))/2;
    As  = As + dAs;
end
ANSWER = As

% ANSWER = 0.3558

Mark Hennings
Sep 20, 2020

As before, the matrix A A has eigenvalues 7 10 -\tfrac{7}{10} , 3 10 -\tfrac{3}{10} and 0 0 , with corresponding eigenvectors ( 1 1 3 ) ( 0 1 0 ) ( 1 2 1 ) \left(\begin{array}{c}1 \\ 1 \\ -3 \end{array}\right) \hspace{1.5cm} \left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array}\right) \hspace{1.5cm} \left(\begin{array}{c} 1 \\ 2 \\ 1 \end{array} \right) Thus e A t ( 1 1 3 ) = e 7 t 10 ( 1 1 3 ) e A t ( 0 1 0 ) = e 3 t 10 ( 0 1 0 ) e A t ( 1 2 1 ) = ( 1 2 1 ) e^{At}\left(\begin{array}{c}1 \\ 1 \\ -3 \end{array}\right) = e^{-\frac{7t}{10}}\left(\begin{array}{c}1 \\ 1 \\ -3 \end{array}\right) \hspace{1cm} e^{At} \left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array}\right) = e^{-\frac{3t}{10}}\left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array}\right) \hspace{1cm} e^{At}\left(\begin{array}{c} 1 \\ 2 \\ 1 \end{array} \right) = \left(\begin{array}{c} 1 \\ 2 \\ 1 \end{array} \right) Since v ( 0 ) = ( 1 2 4 ) = 3 4 ( 1 1 3 ) 3 4 ( 0 1 0 ) + 7 4 ( 1 2 1 ) \mathbf{v}(0) \; = \; \left(\begin{array}{c}1 \\ 2 \\ 4 \end{array}\right) \; = \; -\tfrac34\left(\begin{array}{c}1 \\ 1 \\ -3 \end{array}\right) - \tfrac34 \left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array}\right) + \tfrac74\left(\begin{array}{c} 1 \\ 2 \\ 1 \end{array} \right) we have v ( t ) = e A t v ( 0 ) = 3 4 e 7 t 10 ( 1 1 3 ) 3 4 e 3 t 10 ( 0 1 0 ) + 7 4 ( 1 2 1 ) \mathbf{v}(t) \; = \; e^{At}\mathbf{v}(0) \; = \; -\tfrac34e^{-\frac{7t}{10}}\left(\begin{array}{c}1 \\ 1 \\ -3 \end{array}\right) - \tfrac34 e^{-\frac{3t}{10}}\left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array}\right) + \tfrac74\left(\begin{array}{c} 1 \\ 2 \\ 1 \end{array} \right) The vector v ( t ) v ( 0 ) \mathbf{v}(t) - \mathbf{v}(0) is always perpendicular to ( 3 , 0 , 1 ) T (3,0,1)^\mathsf{T} , and it traces a planar curve, which can be described parametrically in terms of components (calculated by finding two mutually perpendicular unit vectors that are normal to ( 3 , 0 , 1 ) T (3,0,1)^\mathsf{T} ): X ( t ) = [ v ( t ) v ( 0 ) ] 1 14 ( 1 2 3 ) Y ( t ) = [ v ( t ) v ( 0 ) ] 1 35 ( 1 5 3 ) \begin{aligned} X(t) & = \; \big[\mathbf{v}(t) - \mathbf{v}(0)\big] \cdot \tfrac{1}{\sqrt{14}}\left(\begin{array}{c}1 \\ 2 \\ -3 \end{array} \right) \\[2ex] Y(t) & = \; \big[\mathbf{v}(t) - \mathbf{v}(0)\big] \cdot \tfrac{1}{\sqrt{35}}\left(\begin{array}{c}1 \\ -5 \\ -3 \end{array} \right) \end{aligned} Plotting Y Y parametrically against X X gives the shape of the region swept out by v ( t ) v ( 0 ) \mathbf{v}(t) - \mathbf{v}(0) :

and the area of this region is 0 X ( t ) Y ( t ) d t = 9 80 10 = 0.355756 \int_0^\infty X'(t)Y(t)\,dt \; = \; \tfrac{9}{80}\sqrt{10} = \boxed{0.355756}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...